These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment. Hueng DY; Chung TT; Chuang WH; Hsu CP; Chou KN; Lin SC Spine (Phila Pa 1976); 2014 Jun; 39(13):E770-6. PubMed ID: 24732834 [TBL] [Abstract][Full Text] [Related]
84. Motion characteristics and related factors of Modic changes in the lumbar spine. Hayashi T; Daubs MD; Suzuki A; Scott TP; Phan KH; Ruangchainikom M; Takahashi S; Shiba K; Wang JC J Neurosurg Spine; 2015 May; 22(5):511-7. PubMed ID: 25700242 [TBL] [Abstract][Full Text] [Related]
85. Biomechanical effects of disc degeneration and hybrid fixation on the transition and adjacent lumbar segments: trade-off between junctional problem, motion preservation, and load protection. Chuang WH; Lin SC; Chen SH; Wang CW; Tsai WC; Chen YJ; Hwang JR Spine (Phila Pa 1976); 2012 Nov; 37(24):E1488-97. PubMed ID: 22872225 [TBL] [Abstract][Full Text] [Related]
86. Compressive preload reduces segmental flexion instability after progressive destabilization of the lumbar spine. Fry RW; Alamin TF; Voronov LI; Fielding LC; Ghanayem AJ; Parikh A; Carandang G; Mcintosh BW; Havey RM; Patwardhan AG Spine (Phila Pa 1976); 2014 Jan; 39(2):E74-81. PubMed ID: 24153162 [TBL] [Abstract][Full Text] [Related]
87. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments. Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393 [TBL] [Abstract][Full Text] [Related]
88. Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs. Tsantrizos A; Andreou A; Aebi M; Steffen T Eur Spine J; 2000 Feb; 9(1):14-22. PubMed ID: 10766072 [TBL] [Abstract][Full Text] [Related]
89. The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures. Liebsch C; Graf N; Appelt K; Wilke HJ PLoS One; 2017; 12(6):e0178733. PubMed ID: 28570671 [TBL] [Abstract][Full Text] [Related]
90. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. Erbulut DU; Zafarparandeh I; Hassan CR; Lazoglu I; Ozer AF J Neurosurg Spine; 2015 Aug; 23(2):200-8. PubMed ID: 25932601 [TBL] [Abstract][Full Text] [Related]
91. Biomechanical properties in motion of lumbar spines with degenerative scoliosis. Rustenburg CME; Kingma I; Holewijn RM; Faraj SSA; van der Veen A; Bisschop A; de Kleuver M; Emanuel KS J Biomech; 2020 Mar; 102():109495. PubMed ID: 31767285 [TBL] [Abstract][Full Text] [Related]
92. Intervertebral kinematics of the cervical spine before, during, and after high-velocity low-amplitude manipulation. Anderst WJ; Gale T; LeVasseur C; Raj S; Gongaware K; Schneider M Spine J; 2018 Dec; 18(12):2333-2342. PubMed ID: 30142458 [TBL] [Abstract][Full Text] [Related]
93. Lumbar segmental mobility according to the grade of the disc, the facet joint, the muscle, and the ligament pathology by using kinetic magnetic resonance imaging. Kong MH; Morishita Y; He W; Miyazaki M; Zhang H; Wu G; Hymanson HJ; Wang JC Spine (Phila Pa 1976); 2009 Nov; 34(23):2537-44. PubMed ID: 19841613 [TBL] [Abstract][Full Text] [Related]
94. Using finite element analysis to determine effects of the motion loading method on facet joint forces after cervical disc degeneration. Cai XY; Sang D; Yuchi CX; Cui W; Zhang C; Du CF; Liu B Comput Biol Med; 2020 Jan; 116():103519. PubMed ID: 31710870 [TBL] [Abstract][Full Text] [Related]
95. An in Vitro Biomechanical Model of Differing Pedicle Screw Configurations for Long Construct Segmental Thoracic Fixation. Tuchman A; Turner AWL; Metzger MF; Acosta FL Oper Neurosurg (Hagerstown); 2017 Dec; 13(6):718-723. PubMed ID: 29186600 [TBL] [Abstract][Full Text] [Related]
96. Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression- a finite element study. Shih SL; Liu CL; Huang LY; Huang CH; Chen CS BMC Musculoskelet Disord; 2013 Jun; 14():191. PubMed ID: 23777265 [TBL] [Abstract][Full Text] [Related]
97. Segmental translation after lumbar total disc replacement using Prodisc-L®: associated factors and relation to facet arthrosis. Shin MH; Ryu KS; Rathi NK; Park CK J Neurosurg Sci; 2017 Feb; 61(1):14-21. PubMed ID: 25649063 [TBL] [Abstract][Full Text] [Related]
98. Risk of Implant Loosening After Cyclic Loading of Fusionless Growth Modulation Techniques: Nitinol Staples Versus Flexible Tether. Yaszay B; Doan JD; Parvaresh KC; Farnsworth CL Spine (Phila Pa 1976); 2017 Apr; 42(7):443-449. PubMed ID: 27454539 [TBL] [Abstract][Full Text] [Related]
99. Five-year adjacent-level degenerative changes in patients with single-level disease treated using lumbar total disc replacement with ProDisc-L versus circumferential fusion. Zigler JE; Glenn J; Delamarter RB J Neurosurg Spine; 2012 Dec; 17(6):504-11. PubMed ID: 23082849 [TBL] [Abstract][Full Text] [Related]
100. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study. Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]