These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 25978149)
1. The influence of yttrium dopant on the properties of anatase nanoparticles and the performance of dye-sensitized solar cells. Zhao B; Wang J; Li H; Wang H; Jia X; Su P Phys Chem Chem Phys; 2015 Jun; 17(22):14836-42. PubMed ID: 25978149 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436 [TBL] [Abstract][Full Text] [Related]
4. Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. Cheng G; Akhtar MS; Yang OB; Stadler FJ ACS Appl Mater Interfaces; 2013 Jul; 5(14):6635-42. PubMed ID: 23777569 [TBL] [Abstract][Full Text] [Related]
5. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells. Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644 [TBL] [Abstract][Full Text] [Related]
6. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells. Rui Y; Li Y; Wang H; Zhang Q Chem Asian J; 2012 Oct; 7(10):2313-20. PubMed ID: 22890917 [TBL] [Abstract][Full Text] [Related]
7. One-Pot Synthesis of Mesoporous TiO₂ Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells. Li ZQ; Que YP; Mo LE; Chen WC; Ding Y; Ma YM; Jiang L; Hu LH; Dai SY ACS Appl Mater Interfaces; 2015 May; 7(20):10928-34. PubMed ID: 25945694 [TBL] [Abstract][Full Text] [Related]
8. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode. Srinivasa Rao S; Punnoose D; Venkata Tulasivarma Ch; Pavan Kumar CH; Gopi CV; Kim SK; Kim HJ Dalton Trans; 2015 Feb; 44(5):2447-55. PubMed ID: 25556975 [TBL] [Abstract][Full Text] [Related]
9. Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells. Ahn JY; Moon KJ; Kim JH; Lee SH; Kang JW; Lee HW; Kim SH ACS Appl Mater Interfaces; 2014 Jan; 6(2):903-9. PubMed ID: 24377279 [TBL] [Abstract][Full Text] [Related]
10. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Shaikh SF; Mane RS; Min BK; Hwang YJ; Joo OS Sci Rep; 2016 Feb; 6():20103. PubMed ID: 26857963 [TBL] [Abstract][Full Text] [Related]
11. Ti Zhou G; Shen L; Xing Z; Kou X; Duan S; Fan L; Meng H; Xu Q; Zhang X; Li L; Zhao M; Mi J; Li Z J Colloid Interface Sci; 2017 Nov; 505():1031-1038. PubMed ID: 28697542 [TBL] [Abstract][Full Text] [Related]
12. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers. Wang X; Xi M; Fong H; Zhu Z ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500 [TBL] [Abstract][Full Text] [Related]
13. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer. Zhou Y; Wang X; Wang H; Song Y; Fang L; Ye N; Wang L Dalton Trans; 2014 Mar; 43(12):4711-9. PubMed ID: 24468963 [TBL] [Abstract][Full Text] [Related]
14. Nanoprecursor-Mediated Synthesis of Mg²⁺-Doped TiO₂ Nanoparticles and Their Application for Dye-Sensitized Solar Cells. Cheng G; Akhtar MS; Yang OB; Stadler FJ J Nanosci Nanotechnol; 2016 Jan; 16(1):744-52. PubMed ID: 27398517 [TBL] [Abstract][Full Text] [Related]
15. Co-sensitization promoted light harvesting with a new mixed-addenda polyoxometalate [Cu(C12H8N2)2]2[V2W4O19]·4H2O in dye-sensitized solar cells. Xu SS; Chen WL; Wang YH; Li YG; Liu ZJ; Shan CH; Su ZM; Wang EB Dalton Trans; 2015 Nov; 44(42):18553-62. PubMed ID: 26443009 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells. Lei BX; Luo QP; Yu XY; Wu WQ; Su CY; Kuang DB Phys Chem Chem Phys; 2012 Oct; 14(38):13175-9. PubMed ID: 22914771 [TBL] [Abstract][Full Text] [Related]
17. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Yu J; Fan J; Lv K Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells. Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO Fan YH; Ho CY; Chang YJ Scanning; 2017; 2017():9152973. PubMed ID: 29109828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]