These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25978189)

  • 1. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.
    Xiong Z; Lai B; Yang P; Zhou Y; Wang J; Fang S
    J Hazard Mater; 2015 Oct; 297():261-8. PubMed ID: 25978189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution.
    Ji Q; Li J; Xiong Z; Lai B
    Chemosphere; 2017 Apr; 172():10-20. PubMed ID: 28061341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid removal of ultra-high-concentration p-nitrophenol in aqueous solution by microwave-enhanced Fe/Cu bimetallic particle (MW-Fe/Cu) system.
    Ren Y; Zhou J; Pan Z; Lai B; Yuan D
    Environ Technol; 2019 Jan; 40(2):239-249. PubMed ID: 28952417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The removal mechanism of nitrobenzene by the Cu-Fe/Carbon material under different aeration conditions.
    Zhang S; Zhu J; Zhang X; Zhu R; Ge F; Xu Y
    J Hazard Mater; 2021 Feb; 403():123584. PubMed ID: 33264851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Ag-Cu co-doping sponge iron-based trimetal for boosting simultaneous degradation of combined pollutants.
    Xing W; Xu X; Zhang M; Zhang X; Shi Y; Nie P; Ju Y
    J Hazard Mater; 2022 Sep; 438():129413. PubMed ID: 35816804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron.
    Nakatsuji Y; Salehi Z; Kawase Y
    J Environ Manage; 2015 Apr; 152():183-91. PubMed ID: 25662484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wastewater degradation by iron/copper nanoparticles and the microorganism growth rate.
    Amen TWM; Eljamal O; Khalil AME; Matsunaga N
    J Environ Sci (China); 2018 Dec; 74():19-31. PubMed ID: 30340672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).
    Ren Y; Yuan Y; Lai B; Zhou Y; Wang J
    J Hazard Mater; 2016 Jan; 302():36-44. PubMed ID: 26448492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI).
    Lai B; Chen Z; Zhou Y; Yang P; Wang J; Chen Z
    J Hazard Mater; 2013 Apr; 250-251():220-8. PubMed ID: 23454461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and novel method to enhance As (V) removal by zero valent iron and activated iron media through air injection at intervals.
    Xu L; Huang Y
    Chemosphere; 2019 May; 222():415-421. PubMed ID: 30711731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized preparation of Ni-Fe
    Zhou B; Fan B; Gong Z; Shao S; Zhou D; Gao S
    Chemosphere; 2024 Jul; 360():142359. PubMed ID: 38782133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.
    Ju Y; Liu X; Liu R; Li G; Wang X; Yang Y; Wei D; Fang J; Dionysiou DD
    J Hazard Mater; 2015 Apr; 287():325-34. PubMed ID: 25668301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Premagnetization enhancing the reactivity of Fe
    Ren Y; Li J; Lai L; Lai B
    Chemosphere; 2018 Mar; 194():634-643. PubMed ID: 29245131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of contaminants by activating peroxymonosulfate (PMS) using zero valent iron (ZVI)-based bimetallic particles (ZVI/Cu, ZVI/Co, ZVI/Ni, and ZVI/Ag).
    Huo X; Zhou P; Liu Y; Cheng F; Liu Y; Cheng X; Zhang Y; Wang Q
    RSC Adv; 2020 Jul; 10(47):28232-28242. PubMed ID: 35519150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation.
    Xie P; Zhang L; Chen J; Ding J; Wan Y; Wang S; Wang Z; Zhou A; Ma J
    Water Res; 2019 Feb; 149():169-178. PubMed ID: 30439580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
    Klas S; Kirk DW
    J Hazard Mater; 2013 May; 252-253():77-82. PubMed ID: 23500792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems.
    Ghauch A; Tuqan A
    Chemosphere; 2008 Oct; 73(5):751-9. PubMed ID: 18656227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role and fate of EDTA in ultrasound-enhanced zero-valent iron/air system.
    Zhou T; Lim TT; Li Y; Lu X; Wong FS
    Chemosphere; 2010 Jan; 78(5):576-82. PubMed ID: 19939434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system.
    Ma LM; Ding ZG; Gao TY; Zhou RF; Xu WY; Liu J
    Chemosphere; 2004 Jun; 55(9):1207-12. PubMed ID: 15081761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Rhodamine B under visible irradiation in the presence of Fe⁰, H₂O₂, citrate and aeration at circumneutral pH.
    Hong J; Lu S; Zhang C; Qi S; Wang Y
    Chemosphere; 2011 Sep; 84(11):1542-7. PubMed ID: 21700310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.