These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25978249)

  • 1. Subdecoherence time generation and detection of orbital entanglement in quantum dots.
    Brange F; Malkoc O; Samuelsson P
    Phys Rev Lett; 2015 May; 114(17):176803. PubMed ID: 25978249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity.
    Dai L; Kuo W; Chung MC
    Sci Rep; 2015 Jun; 5():11188. PubMed ID: 26062033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the decay of entanglement for electron spin qubits in quantum dots.
    Bodoky F; Gühne O; Blaauboer M
    J Phys Condens Matter; 2009 Sep; 21(39):395602. PubMed ID: 21832394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital entanglement and violation of Bell inequalities in mesoscopic conductors.
    Samuelsson P; Sukhorukov EV; Büttiker M
    Phys Rev Lett; 2003 Oct; 91(15):157002. PubMed ID: 14611487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting entanglement using a double-quantum-dot turnstile.
    Blaauboer M; Divincenzo DP
    Phys Rev Lett; 2005 Oct; 95(16):160402. PubMed ID: 16241775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing entanglement and nonlocality of electrons in a double-dot via transport and noise.
    Loss D; Sukhorukov EV
    Phys Rev Lett; 2000 Jan; 84(5):1035-8. PubMed ID: 11017434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.
    Schaibley JR; Burgers AP; McCracken GA; Duan LM; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2013 Apr; 110(16):167401. PubMed ID: 23679636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of decoherence for entanglement between a photon and stored atomic excitation.
    de Riedmatten H; Laurat J; Chou CW; Schomburg EW; Felinto D; Kimble HJ
    Phys Rev Lett; 2006 Sep; 97(11):113603. PubMed ID: 17025884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge qubit entanglement via conditional single-electron transfer in an array of quantum dots.
    Tsukanov AV
    J Phys Condens Matter; 2009 Feb; 21(5):055501. PubMed ID: 21817303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avoiding entanglement sudden death using single-qubit quantum measurement reversal.
    Lim HT; Lee JC; Hong KH; Kim YH
    Opt Express; 2014 Aug; 22(16):19055-68. PubMed ID: 25320992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference between two indistinguishable electrons from independent sources.
    Neder I; Ofek N; Chung Y; Heiblum M; Mahalu D; Umansky V
    Nature; 2007 Jul; 448(7151):333-7. PubMed ID: 17637665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.
    Budich JC; Trauzettel B
    Nanotechnology; 2010 Jul; 21(27):274001. PubMed ID: 20571188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A semiconductor source of triggered entangled photon pairs.
    Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient decoherence-free entanglement distribution over lossy quantum channels.
    Ikuta R; Ono Y; Tashima T; Yamamoto T; Koashi M; Imoto N
    Phys Rev Lett; 2011 Mar; 106(11):110503. PubMed ID: 21469851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment.
    Blair EP; Tóth G; Lent CS
    J Phys Condens Matter; 2018 May; 30(19):195602. PubMed ID: 29578454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bell inequality violation with two remote atomic qubits.
    Matsukevich DN; Maunz P; Moehring DL; Olmschenk S; Monroe C
    Phys Rev Lett; 2008 Apr; 100(15):150404. PubMed ID: 18518088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entanglement dynamics in the presence of controlled unital noise.
    Shaham A; Halevy A; Dovrat L; Megidish E; Eisenberg HS
    Sci Rep; 2015 Jun; 5():10796. PubMed ID: 26060923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-dot charge qubit and transport via dissipative cotunneling.
    Li MR; Le Hur K
    Phys Rev Lett; 2004 Oct; 93(17):176802. PubMed ID: 15525103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scattering-induced entanglement between spin qubits at remote two-state structures.
    Habgood M; Jefferson JH; Briggs GA
    J Phys Condens Matter; 2009 Feb; 21(7):075503. PubMed ID: 21817330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.