BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25978253)

  • 1. Tuning localized transverse surface plasmon resonance in electricity-selected single-wall carbon nanotubes by electrochemical doping.
    Igarashi T; Kawai H; Yanagi K; Cuong NT; Okada S; Pichler T
    Phys Rev Lett; 2015 May; 114(17):176807. PubMed ID: 25978253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Length-dependent plasmon resonance in single-walled carbon nanotubes.
    Morimoto T; Joung SK; Saito T; Futaba DN; Hata K; Okazaki T
    ACS Nano; 2014 Oct; 8(10):9897-904. PubMed ID: 25283493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling.
    Chen L; Sakamoto M; Sato R; Teranishi T
    Faraday Discuss; 2015; 181():355-64. PubMed ID: 25927080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of photoluminescence from ZnO film by single wall carbon nanotubes.
    Suh J; Song H; Kim EK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6148-51. PubMed ID: 22121675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.
    Wen F; Zhang Y; Gottheim S; King NS; Zhang Y; Nordlander P; Halas NJ
    ACS Nano; 2015 Jun; 9(6):6428-35. PubMed ID: 25986388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA; Döblinger M; Rodríguez-Fernández J
    J Am Chem Soc; 2015 Sep; 137(36):11666-77. PubMed ID: 26332445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes.
    Vasconcelos TL; Archanjo BS; Fragneaud B; Oliveira BS; Riikonen J; Li C; Ribeiro DS; Rabelo C; Rodrigues WN; Jorio A; Achete CA; Cançado LG
    ACS Nano; 2015 Jun; 9(6):6297-304. PubMed ID: 26027751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective controlling transverse plasmon spectrum of pentagonal gold nanotube: from visible to near-infrared region.
    Liu YL; Zhu J; Weng GJ; Li JJ; Zhao JW
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34320484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically abrupt localized surface plasmon resonances in si nanowires by mitigation of carrier density gradients.
    Chou LW; Boyuk DS; Filler MA
    ACS Nano; 2015 Feb; 9(2):1250-6. PubMed ID: 25612192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.
    Zhang XY; Hu A; Zhang T; Lei W; Xue XJ; Zhou Y; Duley WW
    ACS Nano; 2011 Nov; 5(11):9082-92. PubMed ID: 21955107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covellite CuS nanocrystals: realizing rapid microwave-assisted synthesis in air and unravelling the disappearance of their plasmon resonance after coupling with carbon nanotubes.
    Kim MR; Hafez HA; Chai X; Besteiro LV; Tan L; Ozaki T; Govorov AO; Izquierdo R; Ma D
    Nanoscale; 2016 Jul; 8(26):12946-57. PubMed ID: 27304092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.
    Schimpf AM; Thakkar N; Gunthardt CE; Masiello DJ; Gamelin DR
    ACS Nano; 2014 Jan; 8(1):1065-72. PubMed ID: 24359559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping.
    Tian X; Gu Q; Duan J; Chen R; Liu H; Hou Y; Chen J
    Nanoscale; 2018 Apr; 10(14):6288-6293. PubMed ID: 29577139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large dynamic resonance transition between surface plasmon and localized surface plasmon modes.
    Tian Z; Azad AK; Lu X; Gu J; Han J; Xing Q; Taylor AJ; O'Hara JF; Zhang W
    Opt Express; 2010 Jun; 18(12):12482-8. PubMed ID: 20588374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical doping of chirality-resolved carbon nanotubes.
    Kavan L; Kalbac M; Zukalova M; Dunsch L
    J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.
    Cox JD; Singh MR; Antón MA; Carreño F
    J Phys Condens Matter; 2013 Sep; 25(38):385302. PubMed ID: 23988724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.