These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25978258)

  • 1. Field-dependent size and shape of single magnetic Skyrmions.
    Romming N; Kubetzka A; Hanneken C; von Bergmann K; Wiesendanger R
    Phys Rev Lett; 2015 May; 114(17):177203. PubMed ID: 25978258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.
    von Bergmann K; Kubetzka A; Pietzsch O; Wiesendanger R
    J Phys Condens Matter; 2014 Oct; 26(39):394002. PubMed ID: 25214495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance.
    Hanneken C; Otte F; Kubetzka A; Dupé B; Romming N; von Bergmann K; Wiesendanger R; Heinze S
    Nat Nanotechnol; 2015 Dec; 10(12):1039-42. PubMed ID: 26436563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy.
    Hervé M; Dupé B; Lopes R; Böttcher M; Martins MD; Balashov T; Gerhard L; Sinova J; Wulfhekel W
    Nat Commun; 2018 Mar; 9(1):1015. PubMed ID: 29523833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolated zero field sub-10 nm skyrmions in ultrathin Co films.
    Meyer S; Perini M; von Malottki S; Kubetzka A; Wiesendanger R; von Bergmann K; Heinze S
    Nat Commun; 2019 Aug; 10(1):3823. PubMed ID: 31444358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Writing and deleting single magnetic skyrmions.
    Romming N; Hanneken C; Menzel M; Bickel JE; Wolter B; von Bergmann K; Kubetzka A; Wiesendanger R
    Science; 2013 Aug; 341(6146):636-9. PubMed ID: 23929977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducing skyrmions in ultrathin Fe films by hydrogen exposure.
    Hsu PJ; Rózsa L; Finco A; Schmidt L; Palotás K; Vedmedenko E; Udvardi L; Szunyogh L; Kubetzka A; von Bergmann K; Wiesendanger R
    Nat Commun; 2018 Apr; 9(1):1571. PubMed ID: 29679007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skyrmion-skyrmion interaction in a magnetic film.
    Capic D; Garanin DA; Chudnovsky EM
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32526724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice.
    Matsumoto T; So YG; Kohno Y; Sawada H; Ikuhara Y; Shibata N
    Sci Adv; 2016 Feb; 2(2):e1501280. PubMed ID: 26933690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures.
    Boulle O; Vogel J; Yang H; Pizzini S; de Souza Chaves D; Locatelli A; Menteş TO; Sala A; Buda-Prejbeanu LD; Klein O; Belmeguenai M; Roussigné Y; Stashkevich A; Chérif SM; Aballe L; Foerster M; Chshiev M; Auffret S; Miron IM; Gaudin G
    Nat Nanotechnol; 2016 May; 11(5):449-54. PubMed ID: 26809057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy.
    Pollard SD; Garlow JA; Yu J; Wang Z; Zhu Y; Yang H
    Nat Commun; 2017 Mar; 8():14761. PubMed ID: 28281542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states.
    Heo C; Kiselev NS; Nandy AK; Blügel S; Rasing T
    Sci Rep; 2016 Jun; 6():27146. PubMed ID: 27273157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical Thermodynamics of Chiral Skyrmions in a Ferromagnetic Material.
    Zivieri R
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions.
    Legrand W; Maccariello D; Reyren N; Garcia K; Moutafis C; Moreau-Luchaire C; Collin S; Bouzehouane K; Cros V; Fert A
    Nano Lett; 2017 Apr; 17(4):2703-2712. PubMed ID: 28358984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of skyrmions in a multiferroic material.
    Seki S; Yu XZ; Ishiwata S; Tokura Y
    Science; 2012 Apr; 336(6078):198-201. PubMed ID: 22499941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots.
    Tejo F; Riveros A; Escrig J; Guslienko KY; Chubykalo-Fesenko O
    Sci Rep; 2018 Apr; 8(1):6280. PubMed ID: 29674646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of internal spin structure of magnetic vortex cores.
    Wachowiak A; Wiebe J; Bode M; Pietzsch O; Morgenstern M; Wiesendanger R
    Science; 2002 Oct; 298(5593):577-80. PubMed ID: 12386329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet.
    Du H; Zhao X; Rybakov FN; Borisov AB; Wang S; Tang J; Jin C; Wang C; Wei W; Kiselev NS; Zhang Y; Che R; Blügel S; Tian M
    Phys Rev Lett; 2018 May; 120(19):197203. PubMed ID: 29799255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the topology of an artificial magnetic skyrmion.
    Li J; Tan A; Moon KW; Doran A; Marcus MA; Young AT; Arenholz E; Ma S; Yang RF; Hwang C; Qiu ZQ
    Nat Commun; 2014 Aug; 5():4704. PubMed ID: 25134845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.