These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25978423)

  • 21. A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in
    Lejeune C; Sago L; Cornu D; Redeker V; Virolle MJ
    Front Microbiol; 2021; 12():813993. PubMed ID: 35392450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor.
    Martín JF; Santos-Beneit F; Rodríguez-García A; Sola-Landa A; Smith MC; Ellingsen TE; Nieselt K; Burroughs NJ; Wellington EM
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):61-75. PubMed ID: 22622839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate effect on filipin production and morphological differentiation in Streptomyces filipinensis and the role of the PhoP transcription factor.
    Barreales EG; Payero TD; de Pedro A; Aparicio JF
    PLoS One; 2018; 13(12):e0208278. PubMed ID: 30521601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of glass beads cultivation system to study the global effect of the ppk gene inactivation in Streptomyces lividans.
    Nezbedová S; Bezoušková S; Kofroňová O; Benada O; Rehulka P; Rehulková H; Goldová J; Janeček J; Weiser J
    Folia Microbiol (Praha); 2011 Nov; 56(6):519-25. PubMed ID: 22083784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis.
    Le Maréchal P; Decottignies P; Marchand CH; Degrouard J; Jaillard D; Dulermo T; Froissard M; Smirnov A; Chapuis V; Virolle MJ
    Appl Environ Microbiol; 2013 Oct; 79(19):5907-17. PubMed ID: 23872561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets.
    Allenby NE; Laing E; Bucca G; Kierzek AM; Smith CP
    Nucleic Acids Res; 2012 Oct; 40(19):9543-56. PubMed ID: 22904076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of MtrA on phosphate metabolism genes and the response to altered phosphate conditions in Streptomyces.
    Zhu Y; Zhang P; Lu T; Wang X; Li A; Lu Y; Tao M; Pang X
    Environ Microbiol; 2021 Nov; 23(11):6907-6923. PubMed ID: 34390613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of oligo-R-3-hydroxybutyrates to S. lividans KcsA channel structure and function.
    Negoda A; Negoda E; Reusch RN
    Mol Biosyst; 2010 Nov; 6(11):2249-55. PubMed ID: 20862428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PhoR autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular PAS domain during the PhoPR-mediated phosphate limitation response of Bacillus subtilis.
    Botella E; Devine SK; Hubner S; Salzberg LI; Gale RT; Brown ED; Link H; Sauer U; Codée JD; Noone D; Devine KM
    Mol Microbiol; 2014 Dec; 94(6):1242-59. PubMed ID: 25315493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor.
    Sola-Landa A; Rodríguez-García A; Apel AK; Martín JF
    Nucleic Acids Res; 2008 Mar; 36(4):1358-68. PubMed ID: 18187507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular ATP levels affect secondary metabolite production in Streptomyces spp.
    Meng L; Li M; Yang SH; Kim TJ; Suh JW
    Biosci Biotechnol Biochem; 2011; 75(8):1576-81. PubMed ID: 21821936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins.
    Hong B; Wang L; Lammertyn E; Geukens N; Van Mellaert L; Li Y; Anné J
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3137-3145. PubMed ID: 16151224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440.
    Casey WT; Nikodinovic-Runic J; Fonseca Garcia P; Guzik MW; McGrath JW; Quinn JP; Cagney G; Prieto MA; O'Connor KE
    Environ Microbiol Rep; 2013 Oct; 5(5):740-6. PubMed ID: 24115625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PHO8 gene coding alkaline phosphatase of Saccharomyces cerevisiae is involved in polyphosphate metabolism.
    Kizawa K; Aono T; Ohtomo R
    J Gen Appl Microbiol; 2017 Jan; 62(6):297-302. PubMed ID: 27829585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae.
    Vagabov VM; Trilisenko LV; Kulaev IS
    Biochemistry (Mosc); 2000 Mar; 65(3):349-54. PubMed ID: 10739478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein synthesis controls phosphate homeostasis.
    Pontes MH; Groisman EA
    Genes Dev; 2018 Jan; 32(1):79-92. PubMed ID: 29437726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion of xylR gene enhances expression of xylose isomerase in Streptomyces lividans TK24.
    Heo GY; Kim WC; Joo GJ; Kwak YY; Shin JH; Roh DH; Park HD; Rhee IK
    J Microbiol Biotechnol; 2008 May; 18(5):837-44. PubMed ID: 18633279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the influence of overexpression of phosphoenolpyruvate carboxykinase in Streptomyces lividans on growth and production of human tumour necrosis factor-alpha.
    Lule I; Maldonado B; D'Huys PJ; Van Mellaert L; Van Impe J; Bernaerts K; Anné J
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):367-72. PubMed ID: 22797598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoinositides are involved in control of the glucose-dependent growth resumption that follows the transition phase in Streptomyces lividans.
    Chouayekh H; Nothaft H; Delaunay S; Linder M; Payrastre B; Seghezzi N; Titgemeyer F; Virolle MJ
    J Bacteriol; 2007 Feb; 189(3):741-9. PubMed ID: 17122350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens.
    Yuan ZC; Zaheer R; Finan TM
    Mol Microbiol; 2005 Nov; 58(3):877-94. PubMed ID: 16238634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.