BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25978435)

  • 1. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
    Mullins EA; Shi R; Kotsch LA; Eichman BF
    PLoS One; 2015; 10(5):e0127733. PubMed ID: 25978435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD.
    Rubinson EH; Metz AH; O'Quin J; Eichman BF
    J Mol Biol; 2008 Aug; 381(1):13-23. PubMed ID: 18585735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures.
    Backe PH; Simm R; Laerdahl JK; Dalhus B; Fagerlund A; Okstad OA; Rognes T; Alseth I; Kolstø AB; Bjørås M
    J Struct Biol; 2013 Jul; 183(1):66-75. PubMed ID: 23623903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The substrate binding interface of alkylpurine DNA glycosylase AlkD.
    Mullins EA; Rubinson EH; Eichman BF
    DNA Repair (Amst); 2014 Jan; 13():50-4. PubMed ID: 24286669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases.
    Denver DR; Swenson SL; Lynch M
    Mol Biol Evol; 2003 Oct; 20(10):1603-11. PubMed ID: 12832627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex.
    Ahmadi A; Till K; Backe PH; Blicher P; Diekmann R; Schüttpelz M; Glette K; Tørresen J; Bjørås M; Rowe AD; Dalhus B
    Commun Biol; 2021 Jul; 4(1):876. PubMed ID: 34267321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats.
    Dalhus B; Helle IH; Backe PH; Alseth I; Rognes T; Bjørås M; Laerdahl JK
    Nucleic Acids Res; 2007; 35(7):2451-9. PubMed ID: 17395642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain structure of the DEMETER 5-methylcytosine DNA glycosylase.
    Mok YG; Uzawa R; Lee J; Weiner GM; Eichman BF; Fischer RL; Huh JH
    Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19225-30. PubMed ID: 20974931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
    Parsons ZD; Bland JM; Mullins EA; Eichman BF
    J Am Chem Soc; 2016 Sep; 138(36):11485-8. PubMed ID: 27571247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models.
    Peng S; Wang X; Zhang L; He S; Zhao XS; Huang X; Chen C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21889-21895. PubMed ID: 32820079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the structural mechanisms of DNA glycosylases.
    Brooks SC; Adhikary S; Rubinson EH; Eichman BF
    Biochim Biophys Acta; 2013 Jan; 1834(1):247-71. PubMed ID: 23076011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus.
    Starkuviene V; Fritz HJ
    Nucleic Acids Res; 2002 May; 30(10):2097-102. PubMed ID: 12000829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.