BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25978546)

  • 1. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon.
    Sorokin DY; Kublanov IV; Gavrilov SN; Rojo D; Roman P; Golyshin PN; Slepak VZ; Smedile F; Ferrer M; Messina E; La Cono V; Yakimov MM
    ISME J; 2016 Jan; 10(1):240-52. PubMed ID: 25978546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of 'Halanaeroarchaeum sulfurireducens' M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee.
    Messina E; Sorokin DY; Kublanov IV; Toshchakov S; Lopatina A; Arcadi E; Smedile F; La Spada G; La Cono V; Yakimov MM
    Stand Genomic Sci; 2016; 11():35. PubMed ID: 27182430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats.
    Sorokin DY; Messina E; Smedile F; Roman P; Damsté JSS; Ciordia S; Mena MC; Ferrer M; Golyshin PN; Kublanov IV; Samarov NI; Toshchakov SV; La Cono V; Yakimov MM
    ISME J; 2017 May; 11(5):1245-1260. PubMed ID: 28106880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum).
    Chan LK; Weber TS; Morgan-Kiss RM; Hanson TE
    Microbiology (Reading); 2008 Mar; 154(Pt 3):818-829. PubMed ID: 18310028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The methylaspartate cycle in haloarchaea and its possible role in carbon metabolism.
    Borjian F; Han J; Hou J; Xiang H; Berg IA
    ISME J; 2016 Mar; 10(3):546-57. PubMed ID: 26241502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic elemental sulfur reduction by fungus Fusarium oxysporum.
    Abe T; Hoshino T; Nakamura A; Takaya N
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2402-7. PubMed ID: 17928705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.
    Kletzin A; Urich T; Müller F; Bandeiras TM; Gomes CM
    J Bioenerg Biomembr; 2004 Feb; 36(1):77-91. PubMed ID: 15168612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur metabolism in Beggiatoa alba.
    Schmidt TM; Arieli B; Cohen Y; Padan E; Strohl WR
    J Bacteriol; 1987 Dec; 169(12):5466-72. PubMed ID: 3316186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes.
    Sorokin DY; Messina E; La Cono V; Ferrer M; Ciordia S; Mena MC; Toshchakov SV; Golyshin PN; Yakimov MM
    Front Microbiol; 2018; 9():2359. PubMed ID: 30333814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur metabolism in archaea reveals novel processes.
    Liu Y; Beer LL; Whitman WB
    Environ Microbiol; 2012 Oct; 14(10):2632-44. PubMed ID: 22626264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel proteins for homocysteine biosynthesis in anaerobic microorganisms.
    Rauch BJ; Gustafson A; Perona JJ
    Mol Microbiol; 2014 Dec; 94(6):1330-42. PubMed ID: 25315403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle.
    Anantharaman K; Hausmann B; Jungbluth SP; Kantor RS; Lavy A; Warren LA; Rappé MS; Pester M; Loy A; Thomas BC; Banfield JF
    ISME J; 2018 Jun; 12(7):1715-1728. PubMed ID: 29467397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cytoplasmic NAD(P)H-Dependent Polysulfide Reductase with Thiosulfate Reductase Activity from the Hyperthermophilic Bacterium Thermotoga maritima.
    Liang J; Huang H; Wang Y; Li L; Yi J; Wang S
    Microbiol Spectr; 2022 Aug; 10(4):e0043622. PubMed ID: 35762779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic Alphaproteobacterium Azospirillum thiophilum.
    Orlova MV; Tarlachkov SV; Dubinina GA; Belousova EV; Tutukina MN; Grabovich MY
    FEMS Microbiol Ecol; 2016 Dec; 92(12):. PubMed ID: 27660606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomic dating--the relative antiquity of archaeal metabolic and physiological traits.
    Blank CE
    Astrobiology; 2009 Mar; 9(2):193-219. PubMed ID: 19371161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiological Distinctions of Haloarchaea from a Hypersaline Antarctic Lake as Determined by Metaproteomics.
    Tschitschko B; Williams TJ; Allen MA; Zhong L; Raftery MJ; Cavicchioli R
    Appl Environ Microbiol; 2016 Jun; 82(11):3165-73. PubMed ID: 26994078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysulfide reduction by Clostridium relatives isolated from sulfate-reducing enrichment cultures.
    Takahashi Y; Suto K; Inoue C
    J Biosci Bioeng; 2010 Apr; 109(4):372-80. PubMed ID: 20226380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism in hyperthermophilic microorganisms.
    Kelly RM; Adams MW
    Antonie Van Leeuwenhoek; 1994; 66(1-3):247-70. PubMed ID: 7747936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium.
    Wolfe RS; Penning N
    Appl Environ Microbiol; 1977 Feb; 33(2):427-33. PubMed ID: 848960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.