These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25978546)

  • 1. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon.
    Sorokin DY; Kublanov IV; Gavrilov SN; Rojo D; Roman P; Golyshin PN; Slepak VZ; Smedile F; Ferrer M; Messina E; La Cono V; Yakimov MM
    ISME J; 2016 Jan; 10(1):240-52. PubMed ID: 25978546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of 'Halanaeroarchaeum sulfurireducens' M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee.
    Messina E; Sorokin DY; Kublanov IV; Toshchakov S; Lopatina A; Arcadi E; Smedile F; La Spada G; La Cono V; Yakimov MM
    Stand Genomic Sci; 2016; 11():35. PubMed ID: 27182430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats.
    Sorokin DY; Messina E; Smedile F; Roman P; Damsté JSS; Ciordia S; Mena MC; Ferrer M; Golyshin PN; Kublanov IV; Samarov NI; Toshchakov SV; La Cono V; Yakimov MM
    ISME J; 2017 May; 11(5):1245-1260. PubMed ID: 28106880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum).
    Chan LK; Weber TS; Morgan-Kiss RM; Hanson TE
    Microbiology (Reading); 2008 Mar; 154(Pt 3):818-829. PubMed ID: 18310028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The methylaspartate cycle in haloarchaea and its possible role in carbon metabolism.
    Borjian F; Han J; Hou J; Xiang H; Berg IA
    ISME J; 2016 Mar; 10(3):546-57. PubMed ID: 26241502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic elemental sulfur reduction by fungus Fusarium oxysporum.
    Abe T; Hoshino T; Nakamura A; Takaya N
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2402-7. PubMed ID: 17928705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.
    Kletzin A; Urich T; Müller F; Bandeiras TM; Gomes CM
    J Bioenerg Biomembr; 2004 Feb; 36(1):77-91. PubMed ID: 15168612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur metabolism in Beggiatoa alba.
    Schmidt TM; Arieli B; Cohen Y; Padan E; Strohl WR
    J Bacteriol; 1987 Dec; 169(12):5466-72. PubMed ID: 3316186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes.
    Sorokin DY; Messina E; La Cono V; Ferrer M; Ciordia S; Mena MC; Toshchakov SV; Golyshin PN; Yakimov MM
    Front Microbiol; 2018; 9():2359. PubMed ID: 30333814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur metabolism in archaea reveals novel processes.
    Liu Y; Beer LL; Whitman WB
    Environ Microbiol; 2012 Oct; 14(10):2632-44. PubMed ID: 22626264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel proteins for homocysteine biosynthesis in anaerobic microorganisms.
    Rauch BJ; Gustafson A; Perona JJ
    Mol Microbiol; 2014 Dec; 94(6):1330-42. PubMed ID: 25315403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle.
    Anantharaman K; Hausmann B; Jungbluth SP; Kantor RS; Lavy A; Warren LA; Rappé MS; Pester M; Loy A; Thomas BC; Banfield JF
    ISME J; 2018 Jun; 12(7):1715-1728. PubMed ID: 29467397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cytoplasmic NAD(P)H-Dependent Polysulfide Reductase with Thiosulfate Reductase Activity from the Hyperthermophilic Bacterium Thermotoga maritima.
    Liang J; Huang H; Wang Y; Li L; Yi J; Wang S
    Microbiol Spectr; 2022 Aug; 10(4):e0043622. PubMed ID: 35762779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic Alphaproteobacterium Azospirillum thiophilum.
    Orlova MV; Tarlachkov SV; Dubinina GA; Belousova EV; Tutukina MN; Grabovich MY
    FEMS Microbiol Ecol; 2016 Dec; 92(12):. PubMed ID: 27660606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomic dating--the relative antiquity of archaeal metabolic and physiological traits.
    Blank CE
    Astrobiology; 2009 Mar; 9(2):193-219. PubMed ID: 19371161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiological Distinctions of Haloarchaea from a Hypersaline Antarctic Lake as Determined by Metaproteomics.
    Tschitschko B; Williams TJ; Allen MA; Zhong L; Raftery MJ; Cavicchioli R
    Appl Environ Microbiol; 2016 Jun; 82(11):3165-73. PubMed ID: 26994078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysulfide reduction by Clostridium relatives isolated from sulfate-reducing enrichment cultures.
    Takahashi Y; Suto K; Inoue C
    J Biosci Bioeng; 2010 Apr; 109(4):372-80. PubMed ID: 20226380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism in hyperthermophilic microorganisms.
    Kelly RM; Adams MW
    Antonie Van Leeuwenhoek; 1994; 66(1-3):247-70. PubMed ID: 7747936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium.
    Wolfe RS; Penning N
    Appl Environ Microbiol; 1977 Feb; 33(2):427-33. PubMed ID: 848960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.