BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25978548)

  • 41. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco.
    Harig L; Beinecke FA; Oltmanns J; Muth J; Müller O; Rüping B; Twyman RM; Fischer R; Prüfer D; Noll GA
    Plant J; 2012 Dec; 72(6):908-21. PubMed ID: 22889438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily.
    Li W; Liu X; Lu Y
    BMC Genomics; 2016 Aug; 17(1):664. PubMed ID: 27549794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of floral patterning by flowering time genes.
    Liu C; Xi W; Shen L; Tan C; Yu H
    Dev Cell; 2009 May; 16(5):711-22. PubMed ID: 19460347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato.
    Tao X; Gu YH; Jiang YS; Zhang YZ; Wang HY
    Biosci Biotechnol Biochem; 2013; 77(11):2169-74. PubMed ID: 24200775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complementary Transcriptome and Proteome Analyses Provide Insight into the Floral Transition in Bamboo (
    Wang X; Wang Y; Yang G; Zhao L; Zhang X; Li D; Guo Z
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive Transcriptome Analyses Reveal Differential Gene Expression Profiles of
    Hao X; Yang Y; Yue C; Wang L; Horvath DP; Wang X
    Front Plant Sci; 2017; 8():553. PubMed ID: 28458678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New resources for studying the rose flowering process.
    Foucher F; Chevalier M; Corre C; Soufflet-Freslon V; Legeai F; Hibrand-Saint Oyant L
    Genome; 2008 Oct; 51(10):827-37. PubMed ID: 18923534
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes.
    Gregis V; Sessa A; Dorca-Fornell C; Kater MM
    Plant J; 2009 Nov; 60(4):626-37. PubMed ID: 19656343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De novo sequencing of the transcriptome reveals regulators of the floral transition in Fargesia macclureana (Poaceae).
    Li Y; Zhang C; Yang K; Shi J; Ding Y; Gao Z
    BMC Genomics; 2019 Dec; 20(1):1035. PubMed ID: 31888463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth.
    An X; Ye M; Wang D; Wang Z; Cao G; Zheng H; Zhang Z
    Biotechnol Lett; 2011 Jun; 33(6):1239-47. PubMed ID: 21293905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes.
    Porto DD; Bruneau M; Perini P; Anzanello R; Renou JP; dos Santos HP; Fialho FB; Revers LF
    J Exp Bot; 2015 May; 66(9):2659-72. PubMed ID: 25750421
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth.
    Pan ZJ; Cheng CC; Tsai WC; Chung MC; Chen WH; Hu JM; Chen HH
    Plant Cell Physiol; 2011 Sep; 52(9):1515-31. PubMed ID: 21757456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition.
    Meijón M; Feito I; Valledor L; Rodríguez R; Cañal MJ
    Physiol Plant; 2011 Sep; 143(1):82-92. PubMed ID: 21569038
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytohormone and integrated mRNA and miRNA transcriptome analyses and differentiation of male between hermaphroditic floral buds of andromonoecious Diospyros kaki Thunb.
    Li H; Wang L; Mai Y; Han W; Suo Y; Diao S; Sun P; Fu J
    BMC Genomics; 2021 Mar; 22(1):203. PubMed ID: 33757427
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium.
    Yue Y; Yu R; Fan Y
    BMC Genomics; 2015 Jun; 16(1):470. PubMed ID: 26084652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptome profile analysis reveals the regulation mechanism of floral sex differentiation in Jatropha curcas L.
    Hui W; Yang Y; Wu G; Peng C; Chen X; Zayed MZ
    Sci Rep; 2017 Nov; 7(1):16421. PubMed ID: 29180629
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A New Insight into Flowering Regulation: Molecular Basis of Flowering Initiation in
    Jiang Z; Sun L; Wei Q; Ju Y; Zou X; Wan X; Liu X; Yin Z
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31877931
    [No Abstract]   [Full Text] [Related]  

  • 60. Genome-wide identification of lncRNAs during hickory (Carya cathayensis) flowering.
    Fan T; Zhang Q; Hu Y; Wang Z; Huang Y
    Funct Integr Genomics; 2020 Jul; 20(4):591-607. PubMed ID: 32215772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.