BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25978764)

  • 1. The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.
    Chen CH; Azari DP; Hu YH; Lindstrom MJ; Thelen D; Yen TY; Radwin RG
    Ergonomics; 2015; 58(12):2057-66. PubMed ID: 25978764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated video exposure assessment of repetitive hand activity level for a load transfer task.
    Chen CH; Hu YH; Yen TY; Radwin RG
    Hum Factors; 2013 Apr; 55(2):298-308. PubMed ID: 23691826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring elemental time and duty cycle using automated video processing.
    Akkas O; Lee CH; Hu YH; Yen TY; Radwin RG
    Ergonomics; 2016 Nov; 59(11):1514-1525. PubMed ID: 26848051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.
    Greene RL; Azari DP; Hu YH; Radwin RG
    Appl Ergon; 2017 Nov; 65():461-472. PubMed ID: 28284701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accuracy of a 2D video-based lifting monitor.
    Wang X; Hu YH; Lu ML; Radwin RG
    Ergonomics; 2019 Aug; 62(8):1043-1054. PubMed ID: 31092146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TWO-DIMENSIONAL VIDEO ANALYSIS IS COMPARABLE TO 3D MOTION CAPTURE IN LOWER EXTREMITY MOVEMENT ASSESSMENT.
    Schurr SA; Marshall AN; Resch JE; Saliba SA
    Int J Sports Phys Ther; 2017 Apr; 12(2):163-172. PubMed ID: 28515970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markerless motion capture using appearance and inertial data.
    Wong C; Zhang Z; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.
    Oliver M; Tingley M; Rogers R; Rickards J; Biden E
    Ergonomics; 2007 Jun; 50(6):837-58. PubMed ID: 17457745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring exertion time, duty cycle and hand activity level for industrial tasks using computer vision.
    Akkas O; Lee CH; Hu YH; Harris Adamson C; Rempel D; Radwin RG
    Ergonomics; 2017 Dec; 60(12):1730-1738. PubMed ID: 28640656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms.
    Rettig O; Krautwurst B; Maier MW; Wolf SI
    BMC Musculoskelet Disord; 2015 Dec; 16():383. PubMed ID: 26646907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of accelerometers as an ergonomic assessment method for arm acceleration-a large-scale field trial.
    Estill CF; MacDonald LA; Wenzl TB; Petersen MR
    Ergonomics; 2000 Sep; 43(9):1430-45. PubMed ID: 11014762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hand speed-duty cycle equation for estimating the ACGIH hand activity level rating.
    Akkas O; Azari DP; Chen CH; Hu YH; Ulin SS; Armstrong TJ; Rempel D; Radwin RG
    Ergonomics; 2015; 58(2):184-94. PubMed ID: 25343278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation.
    Remedios SM; Fischer SL
    J Occup Rehabil; 2021 Dec; 31(4):754-767. PubMed ID: 34515942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitous human upper-limb motion estimation using wearable sensors.
    Zhang ZQ; Wong WC; Wu JK
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):513-21. PubMed ID: 21659035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.
    Whittaker RL; Park W; Dickerson CR
    J Biomech; 2018 Apr; 72():235-240. PubMed ID: 29523349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking.
    Barraza Madrigal JA; Cardiel E; Rogeli P; Leija Salas L; Muñoz Guerrero R
    Med Eng Phys; 2016 Aug; 38(8):793-800. PubMed ID: 27185034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique.
    Shishov N; Elabd K; Komisar V; Chong H; Robinovitch SN
    PLoS One; 2021; 16(10):e0258923. PubMed ID: 34695159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk of upper extremity biomechanical overload in automotive facility.
    Sancini A; Capozzella A; Caciar T; Tomei F; Nardone N; Scala B; Fiaschetti M; Cetica C; Scimitto L; Gioffrrè P; Sinibaldi F; Di Pastena C; Corbosiero P; Schifano MP; Tomei G; Ciarrocca M
    Biomed Environ Sci; 2013 Jan; 26(1):70-5. PubMed ID: 23294618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the observer, single-frame video and computer vision hand activity levels.
    Radwin RG; Hu YH; Akkas O; Bao S; Harris-Adamson C; Lin JH; Meyers AR; Rempel D
    Ergonomics; 2023 Aug; 66(8):1132-1141. PubMed ID: 36227226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of distal upper extremity posture matching using slow-motion and frame-by-frame video methods.
    Kociolek AM; Keir PJ
    Hum Factors; 2010 Jun; 52(3):441-55. PubMed ID: 21077565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.