BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25978775)

  • 1. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.
    Appalakondaiah S; Vaitheeswaran G; Lebègue S
    J Phys Chem A; 2015 Jun; 119(24):6574-81. PubMed ID: 25978775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, vibrational, and quasiparticle band structure of 1,1-diamino-2,2-dinitroethelene from ab initio calculations.
    Appalakondaiah S; Vaitheeswaran G; Lebègue S
    J Chem Phys; 2014 Jan; 140(1):014105. PubMed ID: 24410219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How critical are the van der Waals interactions in polymer crystals?
    Liu CS; Pilania G; Wang C; Ramprasad R
    J Phys Chem A; 2012 Sep; 116(37):9347-52. PubMed ID: 22937808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of van der Waals corrections to the bulk properties of graphite.
    Rêgo CR; Oliveira LN; Tereshchuk P; Da Silva JL
    J Phys Condens Matter; 2015 Oct; 27(41):415502. PubMed ID: 26417925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane.
    Appalakondaiah S; Vaitheeswaran G; Lebègue S
    J Chem Phys; 2013 May; 138(18):184705. PubMed ID: 23676062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes.
    Tao J; Yang J; Rappe AM
    J Chem Phys; 2015 Apr; 142(16):164302. PubMed ID: 25933759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a Reliable Description of the Lattice Vibrations in Organic Molecular Crystals: The Impact of van der Waals Interactions.
    Bedoya-Martínez N; Giunchi A; Salzillo T; Venuti E; Della Valle RG; Zojer E
    J Chem Theory Comput; 2018 Aug; 14(8):4380-4390. PubMed ID: 30021070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of electronic and vibrational properties of sulfanilic acid through periodic and non-periodic DFT calculations.
    Slimani Y; Boukaoud A; Chiba Y; Sebbar D; Ammar MA; Ayad A
    J Mol Model; 2024 Apr; 30(5):121. PubMed ID: 38570393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications.
    Hermann J; DiStasio RA; Tkatchenko A
    Chem Rev; 2017 Mar; 117(6):4714-4758. PubMed ID: 28272886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights.
    González JE; Besse R; Lima MP; Da Silva JLF
    J Chem Inf Model; 2024 Feb; 64(4):1306-1318. PubMed ID: 38347752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections.
    Bučko T; Hafner J; Lebègue S; Ángyán JG
    J Phys Chem A; 2010 Nov; 114(43):11814-24. PubMed ID: 20923175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble.
    Zheng L; Chen M; Sun Z; Ko HY; Santra B; Dhuvad P; Wu X
    J Chem Phys; 2018 Apr; 148(16):164505. PubMed ID: 29716217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quasiparticle band structure of zincblende and rocksalt ZnO.
    Dixit H; Saniz R; Lamoen D; Partoens B
    J Phys Condens Matter; 2010 Mar; 22(12):125505. PubMed ID: 21389492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations.
    Fang C; Li WF; Koster RS; Klimeš J; van Blaaderen A; van Huis MA
    Phys Chem Chem Phys; 2015 Jan; 17(1):365-75. PubMed ID: 25388568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals-corrected density functional theory: benchmarking for hydrogen-nanotube and nanotube-nanotube interactions.
    Du AJ; Smith SC
    Nanotechnology; 2005 Oct; 16(10):2118-23. PubMed ID: 20817982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal-organic frameworks and in acidic zeolites.
    Rehak FR; Piccini G; Alessio M; Sauer J
    Phys Chem Chem Phys; 2020 Apr; 22(14):7577-7585. PubMed ID: 32227013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series.
    Zhou L; Xu J; Xu L; Wu X
    J Chem Phys; 2019 Mar; 150(12):124505. PubMed ID: 30927898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional study of the electronic structure and lattice dynamics of SrCl2.
    Kanchana V; Vaitheeswaran G; Souvatzis P; Eriksson O; Lebègue S
    J Phys Condens Matter; 2010 Nov; 22(44):445402. PubMed ID: 21403346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, Dynamical, and Electronic Properties of Liquid Water: A Hybrid Functional Study.
    Ambrosio F; Miceli G; Pasquarello A
    J Phys Chem B; 2016 Aug; 120(30):7456-70. PubMed ID: 27404717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.