BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 25978838)

  • 1. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.
    Xiao Y; van Hijum SA; Abee T; Wells-Bennik MH
    PLoS One; 2015; 10(5):e0127036. PubMed ID: 25978838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RelA/DTD-mediated regulation of spore formation and toxin production by Clostridium perfringens type A strain SM101.
    Saito R; Talukdar PK; Alanazi SS; Sarker MR
    Microbiology (Reading); 2018 May; 164(5):835-847. PubMed ID: 29624163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The serine proteases CspA and CspC are essential for germination of spores of Clostridium perfringens SM101 through activating SleC and cortex hydrolysis.
    Talukdar PK; Sarker MR
    Food Microbiol; 2020 Apr; 86():103325. PubMed ID: 31703860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.
    Li J; Freedman JC; Evans DR; McClane BA
    Infect Immun; 2017 Mar; 85(3):. PubMed ID: 28052992
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.
    Liu H; Ray WK; Helm RF; Popham DL; Melville SB
    J Bacteriol; 2016 Jun; 198(12):1773-1782. PubMed ID: 27068591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2008 Sep; 25(6):802-8. PubMed ID: 18620972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J; Stirewalt VL; Melville SB
    J Bacteriol; 2004 Aug; 186(16):5221-9. PubMed ID: 15292123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an Important Orphan Histidine Kinase for the Initiation of Sporulation and Enterotoxin Production by
    Freedman JC; Li J; Mi E; McClane BA
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670619
    [No Abstract]   [Full Text] [Related]  

  • 9. l-lysine (pH 6.0) induces germination of spores of Clostridium perfringens type F isolates carrying chromosomal or plasmid-borne enterotoxin gene.
    Banawas S; Sarker MR
    Microb Pathog; 2018 Oct; 123():227-232. PubMed ID: 30031038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness.
    Yasugi M; Okuzaki D; Kuwana R; Takamatsu H; Fujita M; Sarker MR; Miyake M
    Appl Environ Microbiol; 2016 May; 82(10):2929-2942. PubMed ID: 26969700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation.
    Paredes-Sabja D; Sarker N; Setlow B; Setlow P; Sarker MR
    Appl Environ Microbiol; 2008 Jun; 74(12):3730-8. PubMed ID: 18441110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementation of a Clostridium perfringens spo0A mutant with wild-type spo0A from other Clostridium species.
    Huang IH; Sarker MR
    Appl Environ Microbiol; 2006 Sep; 72(9):6388-93. PubMed ID: 16957268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique regulatory mechanism of sporulation and enterotoxin production in Clostridium perfringens.
    Ohtani K; Hirakawa H; Paredes-Sabja D; Tashiro K; Kuhara S; Sarker MR; Shimizu T
    J Bacteriol; 2013 Jun; 195(12):2931-6. PubMed ID: 23585540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces.
    Udompijitkul P; Alnoman M; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2013 Jun; 34(2):328-36. PubMed ID: 23541199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid.
    Paredes-Sabja D; Setlow B; Setlow P; Sarker MR
    J Bacteriol; 2008 Jul; 190(13):4648-59. PubMed ID: 18469104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GerO, a putative Na+/H+-K+ antiporter, is essential for normal germination of spores of the pathogenic bacterium Clostridium perfringens.
    Paredes-Sabja D; Setlow P; Sarker MR
    J Bacteriol; 2009 Jun; 191(12):3822-31. PubMed ID: 19363115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production.
    Li J; Paredes-Sabja D; Sarker MR; McClane BA
    Microbiol Spectr; 2016 Jun; 4(3):. PubMed ID: 27337447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of GerKB in germination and outgrowth of Clostridium perfringens spores.
    Paredes-Sabja D; Setlow P; Sarker MR
    Appl Environ Microbiol; 2009 Jun; 75(11):3813-7. PubMed ID: 19363077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium perfringens spore germination: characterization of germinants and their receptors.
    Paredes-Sabja D; Torres JA; Setlow P; Sarker MR
    J Bacteriol; 2008 Feb; 190(4):1190-201. PubMed ID: 18083820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium perfringens sporulation and its relevance to pathogenesis.
    Paredes-Sabja D; Sarker MR
    Future Microbiol; 2009 Jun; 4(5):519-25. PubMed ID: 19492963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.