BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25978855)

  • 1. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.
    Feng S; Yang H; Wang W
    Bioresour Technol; 2015 Sep; 191():37-44. PubMed ID: 25978855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure.
    Feng S; Yang H; Wang W
    Bioresour Technol; 2015 Sep; 192():75-82. PubMed ID: 26011694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp.
    Yang H; Feng S; Xin Y; Wang W
    Bioresour Technol; 2014 Feb; 154():185-91. PubMed ID: 24389460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.
    Zhu J; Jiao W; Li Q; Liu X; Qin W; Qiu G; Hu Y; Chai L
    J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1833-40. PubMed ID: 22968225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter.
    Feng S; Yang H; Zhan X; Wang W
    Bioresour Technol; 2014 Jun; 161():371-8. PubMed ID: 24727697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.
    Feng S; Yang H; Wang W
    Bioresour Technol; 2016 Jan; 200():186-93. PubMed ID: 26492170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis.
    Yin Z; Feng S; Tong Y; Yang H
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1643-1656. PubMed ID: 31420797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.
    Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H
    Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite.
    Zhu J; Li Q; Jiao W; Jiang H; Sand W; Xia J; Liu X; Qin W; Qiu G; Hu Y; Chai L
    Colloids Surf B Biointerfaces; 2012 Jun; 94():95-100. PubMed ID: 22341516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Introduction of Exogenous Strain
    Liu Y; Wang J; Hou H; Chen G; Liu H; Liu X; Shen L
    Front Microbiol; 2019; 10():3034. PubMed ID: 32010095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil.
    Ko MS; Park HS; Kim KW; Lee JU
    Environ Geochem Health; 2013 Dec; 35(6):727-33. PubMed ID: 23709230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.
    Lara RH; García-Meza JV; González I; Cruz R
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2711-24. PubMed ID: 22584430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate.
    Bobadilla Fazzini RA; Levican G; Parada P
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):771-80. PubMed ID: 21191788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor.
    Xia L; Yin C; Dai S; Qiu G; Chen X; Liu J
    J Ind Microbiol Biotechnol; 2010 Mar; 37(3):289-95. PubMed ID: 20012335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bioleaching potential of a bacterial consortium.
    Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A
    Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.
    Kumar RN; Nagendran R
    Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.
    Zeng J; Gou M; Tang YQ; Li GY; Sun ZY; Kida K
    Bioresour Technol; 2016 Oct; 218():859-66. PubMed ID: 27434303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.