BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25978855)

  • 41. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans.
    García-Meza JV; Fernández JJ; Lara RH; González I
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):6065-75. PubMed ID: 23053079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new technique to evaluate Acidithiobacillus thiooxidans growth during a bioleaching process based on DNA quantification.
    Rivas-Castillo AM; Gómez-Ramírez M; Lucas-Gómez IM; Carrillo-Vega Y; Rojas-Avelizapa NG
    J Microbiol Methods; 2022 Jul; 198():106494. PubMed ID: 35643293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism underlying the bioleaching process of LiCoO
    Wu W; Liu X; Zhang X; Li X; Qiu Y; Zhu M; Tan W
    J Biosci Bioeng; 2019 Sep; 128(3):344-354. PubMed ID: 31014562
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.
    Romo E; Weinacker DF; Zepeda AB; Figueroa CA; Chavez-Crooker P; Farias JG
    Braz J Microbiol; 2013; 44(2):523-8. PubMed ID: 24294251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans.
    Naseri T; Bahaloo-Horeh N; Mousavi SM
    J Environ Manage; 2019 Apr; 235():357-367. PubMed ID: 30708273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of clays on the behavior of acidophilic Thiobacillus strains in suspensions].
    Rinder G
    Z Allg Mikrobiol; 1979; 19(9):643-51. PubMed ID: 397686
    [No Abstract]   [Full Text] [Related]  

  • 47. The interaction of acidophiles driving community functional responses to the re-inoculated chalcopyrite bioleaching process.
    Ma L; Huang S; Wu P; Xiong J; Wang H; Liao H; Liu X
    Sci Total Environ; 2021 Dec; 798():149186. PubMed ID: 34375243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching.
    Feng S; Yang H; Xin Y; Zhang L; Kang W; Wang W
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1625-35. PubMed ID: 22872498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.
    Yin H; Zhang X; Li X; He Z; Liang Y; Guo X; Hu Q; Xiao Y; Cong J; Ma L; Niu J; Liu X
    BMC Microbiol; 2014 Jul; 14():179. PubMed ID: 24993543
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial treatment of sulfur-contaminated industrial wastes.
    Gómez-Ramírez M; Zarco-Tovar K; Aburto J; de León RG; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(2):228-32. PubMed ID: 24171423
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.
    Bredberg K; Karlsson HT; Holst O
    Bioresour Technol; 2004 Mar; 92(1):93-6. PubMed ID: 14643991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations.
    Xia LX; Shen Z; Vargas T; Sun WJ; Ruan RM; Xie ZD; Qiu GZ
    Biotechnol Lett; 2013 Dec; 35(12):2129-36. PubMed ID: 23974497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
    Lee EY; Lee NY; Cho KS; Ryu HW
    J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems.
    Okabe S; Odagiri M; Ito T; Satoh H
    Appl Environ Microbiol; 2007 Feb; 73(3):971-80. PubMed ID: 17142362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-inoculation with beneficial microorganisms enhances tannery sludge bioleaching with Acidithiobacillus thiooxidans.
    Yao J; Wang M; Wang L; Gou M; Zeng J; Tang YQ
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48509-48521. PubMed ID: 35192165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture.
    Jiang H; Liang Y; Yin H; Xiao Y; Guo X; Xu Y; Hu Q; Liu H; Liu X
    Biomed Res Int; 2015; 2015():203197. PubMed ID: 26064886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-Objective Optimization of Copper Bioleaching: Comparative Study of Pure and Co-Cultured Cultivation.
    Rakhshani Y; Rahpeyma SS; Tabandeh F; Arabnezhad M; Azimi A; Raheb J
    Iran J Biotechnol; 2023 Apr; 21(2):e3278. PubMed ID: 37228625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans.
    Yang B; Lin M; Fang J; Zhang R; Luo W; Wang X; Liao R; Wu B; Wang J; Gan M; Liu B; Zhang Y; Liu X; Qin W; Qiu G
    Sci Total Environ; 2020 Jan; 698():134175. PubMed ID: 31518786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ferric iron uptake genes are differentially expressed in the presence of copper sulfides in Acidithiobacillus ferrooxidans strain LR.
    Ferraz LF; Verde LC; Vicentini R; Felício AP; Ribeiro ML; Alexandrino F; Novo MT; Garcia O; Rigden DJ; Ottoboni LM
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):609-17. PubMed ID: 21132364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.