BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

852 related articles for article (PubMed ID: 25979006)

  • 1. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.
    Oborn BM; Dowdell S; Metcalfe PE; Crozier S; Mohan R; Keall PJ
    Med Phys; 2015 May; 42(5):2113-24. PubMed ID: 25979006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton beam behavior in a parallel configured MRI-proton therapy hybrid: Effects of time-varying gradient magnetic fields.
    Santos DM; Wachowicz K; Burke B; Fallone BG
    Med Phys; 2019 Feb; 46(2):822-838. PubMed ID: 30488968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical note: Experimental dosimetric characterization of proton pencil beam distortion in a perpendicular magnetic field of an in-beam MR scanner.
    Gebauer B; Pawelke J; Hoffmann A; Lühr A
    Med Phys; 2023 Nov; 50(11):7294-7303. PubMed ID: 37161832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the MLC on the MRI field distortion of a prototype MRI-linac.
    Kolling S; Oborn B; Keall P
    Med Phys; 2013 Dec; 40(12):121705. PubMed ID: 24320491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system.
    Oborn BM; Kolling S; Metcalfe PE; Crozier S; Litzenberg DW; Keall PJ
    Med Phys; 2014 May; 41(5):051708. PubMed ID: 24784374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy.
    Schellhammer SM; Gantz S; Lühr A; Oborn BM; Bussmann M; Hoffmann AL
    Med Phys; 2018 Jul; 45(7):3429-3434. PubMed ID: 29763970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated MRI-guided proton therapy planning: Accounting for the full MRI field in a perpendicular system.
    Burigo LN; Oborn BM
    Med Phys; 2022 Mar; 49(3):1853-1873. PubMed ID: 34908170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical solution to proton Bragg peak deflection in a magnetic field.
    Wolf R; Bortfeld T
    Phys Med Biol; 2012 Sep; 57(17):N329-37. PubMed ID: 22892827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy.
    Fuchs H; Moser P; Gröschl M; Georg D
    Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An initial systematic study of the linear energy transfer distributions of a proton beam under a transverse magnetic field.
    Fujii Y; Ueda H; Umegaki K; Matsuura T
    Med Phys; 2022 Mar; 49(3):1839-1852. PubMed ID: 35124798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field.
    Oborn BM; Metcalfe PE; Butson MJ; Rosenfeld AB; Keall PJ
    Med Phys; 2012 Feb; 39(2):874-90. PubMed ID: 22320797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pencil beam algorithm for magnetic resonance image-guided proton therapy.
    Padilla-Cabal F; Georg D; Fuchs H
    Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric Deviations of Bragg-Peak Position Shifts in Uniform Magnetic Fields for Magnetic Resonance Imaging-Guiding Proton Radiotherapy: A Monte Carlo Study.
    Wang X; Pan H; Cheng Q; Wang X; Xu W
    Front Public Health; 2021; 9():641915. PubMed ID: 34414150
    [No Abstract]   [Full Text] [Related]  

  • 16. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: proof of concept.
    Hyer DE; Hill PM; Wang D; Smith BR; Flynn RT
    Med Phys; 2014 Sep; 41(9):091701. PubMed ID: 25186376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of secondary particles on the magnetic field generated by a proton pencil beam: a finite-element analysis based on Geant4-DNA simulations.
    Rädler M; Buizza G; Kawula M; Palaniappan P; Gianoli C; Baroni G; Paganelli C; Parodi K; Riboldi M
    Med Phys; 2023 Feb; 50(2):1000-1018. PubMed ID: 36346042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.
    Keyvanloo A; Burke B; Warkentin B; Tadic T; Rathee S; Kirkby C; Santos DM; Fallone BG
    Med Phys; 2012 Oct; 39(10):6509-21. PubMed ID: 23039685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed.
    Schellhammer SM; Hoffmann AL
    Phys Med Biol; 2017 Feb; 62(4):1548-1564. PubMed ID: 28121631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room.
    Englbrecht FS; Trinkl S; Mares V; Rühm W; Wielunski M; Wilkens JJ; Hillbrand M; Parodi K
    Z Med Phys; 2021 May; 31(2):215-228. PubMed ID: 33622567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.