BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 25979013)

  • 1. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.
    Via R; Fassi A; Fattori G; Fontana G; Pella A; Tagaste B; Riboldi M; Ciocca M; Orecchia R; Baroni G
    Med Phys; 2015 May; 42(5):2194-202. PubMed ID: 25979013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical eye tracking system for noninvasive and automatic monitoring of eye position and movements in radiotherapy treatments of ocular tumors.
    Fassi A; Riboldi M; Forlani CF; Baroni G
    Appl Opt; 2012 May; 51(13):2441-50. PubMed ID: 22614424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: a proof of concept.
    Rüegsegger MB; Geiser D; Steiner P; Pica A; Aebersold DM; Kowal JH
    Med Phys; 2014 Aug; 41(8):081704. PubMed ID: 25086514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive eye localization in ocular proton therapy through optical eye tracking: A proof of concept.
    Via R; Hennings F; Fattori G; Fassi A; Pica A; Lomax A; Weber DC; Baroni G; Hrbacek J
    Med Phys; 2018 May; 45(5):2186-2194. PubMed ID: 29493800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and rotational quality assurance of 6DOF patient tracking systems.
    Belcher AH; Liu X; Grelewicz Z; Wiersma RD
    Med Phys; 2016 Jun; 43(6):2785-2793. PubMed ID: 27277026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. With Gaze Tracking Toward Noninvasive Eye Cancer Treatment.
    Wyder S; Hennings F; Pezold S; Hrbacek J; Cattin PC
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1914-1924. PubMed ID: 26660515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.
    Wang W; Viswanathan AN; Damato AL; Chen Y; Tse Z; Pan L; Tokuda J; Seethamraju RT; Dumoulin CL; Schmidt EJ; Cormack RA
    Med Phys; 2015 Dec; 42(12):7114-21. PubMed ID: 26632065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial HDR brachytherapy.
    Poulin E; Gardi L; Barker K; Montreuil J; Fenster A; Beaulieu L
    Med Phys; 2015 Dec; 42(12):6830-9. PubMed ID: 26632040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
    Li G; Ballangrud A; Kuo LC; Kang H; Kirov A; Lovelock M; Yamada Y; Mechalakos J; Amols H
    Med Phys; 2011 Jul; 38(7):3981-94. PubMed ID: 21858995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic real-time surveillance of eye position and gating for stereotactic radiotherapy of uveal melanoma.
    Petersch B; Bogner J; Dieckmann K; Pötter R; Georg D
    Med Phys; 2004 Dec; 31(12):3521-7. PubMed ID: 15651635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous table acquisition MRI for radiotherapy treatment planning: distortion assessment with a new extended 3D volumetric phantom.
    Walker A; Liney G; Holloway L; Dowling J; Rivest-Henault D; Metcalfe P
    Med Phys; 2015 Apr; 42(4):1982-91. PubMed ID: 25832089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging.
    Liu W; Wiersma RD; Mao W; Luxton G; Xing L
    Phys Med Biol; 2008 Dec; 53(24):7197-213. PubMed ID: 19043177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of optical imaging with a small animal irradiator.
    Weersink RA; Ansell S; Wang A; Wilson G; Shah D; Lindsay PE; Jaffray DA
    Med Phys; 2014 Oct; 41(10):102701. PubMed ID: 25281980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup.
    Bert C; Metheany KG; Doppke K; Chen GT
    Med Phys; 2005 Sep; 32(9):2753-62. PubMed ID: 16266088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commissioning of a fluoroscopic-based real-time markerless tumor tracking system in a superconducting rotating gantry for carbon-ion pencil beam scanning treatment.
    Mori S; Sakata Y; Hirai R; Furuichi W; Shimabukuro K; Kohno R; Koom WS; Kasai S; Okaya K; Iseki Y
    Med Phys; 2019 Apr; 46(4):1561-1574. PubMed ID: 30689205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic, three-dimensional optical tracking of an ablative laser beam.
    Gebhart SC; Jansen ED; Galloway RL
    Med Phys; 2005 Jan; 32(1):209-20. PubMed ID: 15719972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer.
    Djajaputra D; Li S
    Med Phys; 2005 Jan; 32(1):65-75. PubMed ID: 15719956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A noninvasive eye fixation and computer-aided eye monitoring system for linear accelerator-based stereotactic radiotherapy of uveal melanoma.
    Bogner J; Petersch B; Georg D; Dieckmann K; Zehetmayer M; Pötter R
    Int J Radiat Oncol Biol Phys; 2003 Jul; 56(4):1128-36. PubMed ID: 12829151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy.
    Serpa M; Baier K; Cremers F; Guckenberger M; Meyer J
    Med Phys; 2014 Mar; 41(3):031702. PubMed ID: 24593706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise delineation and tumor localization based on novel image registration strategy between optical coherence tomography and computed tomography in the radiotherapy of intraocular cancer.
    Gong C; Shen M; Zheng X; Han C; Zhou Y; Xie C; Jin X
    Phys Med Biol; 2019 Jun; 64(12):125009. PubMed ID: 30844768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.