BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25979014)

  • 1. Novel magnetic heating probe for multimodal cancer treatment.
    Kan-Dapaah K; Rahbar N; Soboyejo W
    Med Phys; 2015 May; 42(5):2203-11. PubMed ID: 25979014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors.
    Gautam B; Parsai EI; Shvydka D; Feldmeier J; Subramanian M
    Med Phys; 2012 Apr; 39(4):1980-90. PubMed ID: 22482619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.
    Lahonian M; Golneshan AA
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimally required heat doses for various tumour sizes in induction heating cancer therapy determined by computer simulation using experimental data.
    Yamada K; Oda T; Hashimoto S; Enomoto T; Ohkohchi N; Ikeda H; Yanagihara H; Kishimoto M; Kita E; Tasaki A; Satake M; Ikehata Y; Nagae H; Nagano I; Takagi T; Kanamori T
    Int J Hyperthermia; 2010; 26(5):465-74. PubMed ID: 20377361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.
    Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT
    Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA.
    Yu L; Liu J; Wu K; Klein T; Jiang Y; Wang JP
    Sci Rep; 2014 Nov; 4():7216. PubMed ID: 25427561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heating efficiency of magnetic nanoparticles under an alternating magnetic field.
    Yu X; Yang R; Wu C; Liu B; Zhang W
    Sci Rep; 2022 Sep; 12(1):16055. PubMed ID: 36163493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.
    Chen SW; Lai JJ; Chiang CL; Chen CL
    Rev Sci Instrum; 2012 Jun; 83(6):064701. PubMed ID: 22755645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.
    Zhao L; Huo M; Liu J; Yao Z; Li D; Zhao Z; Tang J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):741-5. PubMed ID: 23646507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia.
    Javidi M; Heydari M; Attar MM; Haghpanahi M; Karimi A; Navidbakhsh M; Amanpour S
    Int J Hyperthermia; 2015 Feb; 31(1):33-9. PubMed ID: 25523967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PMMA-Fe
    Yu K; Liang B; Zheng Y; Exner A; Kolios M; Xu T; Guo D; Cai X; Wang Z; Ran H; Chu L; Deng Z
    Theranostics; 2019; 9(14):4192-4207. PubMed ID: 31281541
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.