These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25979442)

  • 41. Research on an ankle rehabilitation robot for hemiplegic patients after stroke.
    Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trust in socially assistive robots: Considerations for use in rehabilitation.
    Langer A; Feingold-Polak R; Mueller O; Kellmeyer P; Levy-Tzedek S
    Neurosci Biobehav Rev; 2019 Sep; 104():231-239. PubMed ID: 31348963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ankle ligaments: consideration of syndesmotic injury and implications for rehabilitation.
    Brosky T; Nyland J; Nitz A; Caborn DN
    J Orthop Sports Phys Ther; 1995 Apr; 21(4):197-205. PubMed ID: 7773271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rehabilitation of foot and ankle injuries.
    Losito JM; O'Neil J
    Clin Podiatr Med Surg; 1997 Jul; 14(3):533-57. PubMed ID: 9257040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of 8-weeks proprioceptive exercise program in postural sway and isokinetic strength of ankle sprains of Tunisian athletes.
    Ben Moussa Zouita A; Majdoub O; Ferchichi H; Grandy K; Dziri C; Ben Salah FZ
    Ann Phys Rehabil Med; 2013 Dec; 56(9-10):634-43. PubMed ID: 24169071
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of wrist rehabilitation robot and interface system.
    Yamamoto I; Matsui M; Inagawa N; Hachisuka K; Wada F; Hachisuka A; Saeki S
    Technol Health Care; 2015; 24 Suppl 1():S27-32. PubMed ID: 26409544
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biologically-inspired soft exosuit.
    Asbeck AT; Dyer RJ; Larusson AF; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650455. PubMed ID: 24187272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The relationship between lateral ankle sprain and ankle tendinitis in ballet dancers.
    Ritter S; Moore M
    J Dance Med Sci; 2008; 12(1):23-31. PubMed ID: 19618575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot.
    Sergi F; Lee MM; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR).
    Zhang L; Li J; Dong M; Fang B; Cui Y; Zuo S; Zhang K
    J Healthc Eng; 2019; 2019():4164790. PubMed ID: 31001407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Restoring ADL function after wrist surgery in children with cerebral palsy: a novel Bilateral robot system design.
    Holley D; Theriault A; Kamara S; Anewenter V; Hughes D; Johnson MJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650463. PubMed ID: 24187280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rehabilitation robotics ontology on the cloud.
    Dogmus Z; Papantoniou A; Kilinc M; Yildirim SA; Erdem E; Patoglu V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650415. PubMed ID: 24187234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of a 4-week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability.
    Hale SA; Hertel J; Olmsted-Kramer LC
    J Orthop Sports Phys Ther; 2007 Jun; 37(6):303-11. PubMed ID: 17612356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An in-vivo lateral ankle ligament strain behavior assessment technique for potential use in robot-assisted therapy.
    Zhang M; Zhang Y; Davies TC; Xie S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4022-5. PubMed ID: 25570874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A survey of bio-inspired compliant legged robot designs.
    Zhou X; Bi S
    Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinical designs of recent robot rehabilitation trials.
    Lo AC
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S204-16. PubMed ID: 23080037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Balance training for persons with functionally unstable ankles.
    Rozzi SL; Lephart SM; Sterner R; Kuligowski L
    J Orthop Sports Phys Ther; 1999 Aug; 29(8):478-86. PubMed ID: 10444738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.