These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25980315)

  • 1. Directed Assembly of Nucleic Acid-Based Polymeric Nanoparticles from Molecular Tetravalent Cores.
    Hong BJ; Eryazici I; Bleher R; Thaner RV; Mirkin CA; Nguyen ST
    J Am Chem Soc; 2015 Jul; 137(25):8184-91. PubMed ID: 25980315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.
    Bui MN; Brittany Johnson M; Viard M; Satterwhite E; Martins AN; Li Z; Marriott I; Afonin KA; Khisamutdinov EF
    Nanomedicine; 2017 Apr; 13(3):1137-1146. PubMed ID: 28064006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly.
    Tan LH; Xing H; Chen H; Lu Y
    J Am Chem Soc; 2013 Nov; 135(47):17675-8. PubMed ID: 24148071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug delivery systems based on nucleic acid nanostructures.
    de Vries JW; Zhang F; Herrmann A
    J Control Release; 2013 Dec; 172(2):467-83. PubMed ID: 23742878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.
    Astakhova IK; Wengel J
    Acc Chem Res; 2014 Jun; 47(6):1768-77. PubMed ID: 24749544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.
    Mentovich ED; Livanov K; Prusty DK; Sowwan M; Richter S
    J Nanobiotechnology; 2012 May; 10():21. PubMed ID: 22646980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of DNA nanoparticles through multiple catalyzed hairpin assembly for enzyme-free nucleic acid amplified detection.
    He H; Dai J; Meng Y; Duan Z; Zhou C; Zheng B; Du J; Guo Y; Xiao D
    Talanta; 2018 Mar; 179():641-645. PubMed ID: 29310288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free fluorometric assay for actin detection based on enzyme-responsive DNA-templated copper nanoparticles.
    Song Q; Yang L; Chen H; Zhang R; Na N; Ouyang J
    Talanta; 2017 Nov; 174():444-447. PubMed ID: 28738606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclease-resistant DNA via high-density packing in polymeric micellar nanoparticle coronas.
    Rush AM; Thompson MP; Tatro ET; Gianneschi NC
    ACS Nano; 2013 Feb; 7(2):1379-87. PubMed ID: 23379679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation.
    Rouge JL; Hao L; Wu XA; Briley WE; Mirkin CA
    ACS Nano; 2014 Sep; 8(9):8837-43. PubMed ID: 25144723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating Self-Assembly of DNA Crystals with Rationally Designed Agents.
    Zhao J; Zhao Y; Li Z; Wang Y; Sha R; Seeman NC; Mao C
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16529-16532. PubMed ID: 30240115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems.
    Mokhtarzadeh A; Vahidnezhad H; Youssefian L; Mosafer J; Baradaran B; Uitto J
    Trends Mol Med; 2019 Dec; 25(12):1066-1079. PubMed ID: 31703931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customized Scaffolds for Direct Assembly of Functionalized DNA Origami.
    Oktay E; Bush J; Vargas M; Scarton DV; O'Shea B; Hartman A; Green CM; Neyra K; Gomes CM; Medintz IL; Mathur D; Veneziano R
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):27759-27773. PubMed ID: 37267624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gigadalton-scale shape-programmable DNA assemblies.
    Wagenbauer KF; Sigl C; Dietz H
    Nature; 2017 Dec; 552(7683):78-83. PubMed ID: 29219966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and assembly of conjugates bearing specific numbers of DNA strands per gold nanoparticle.
    Borovok N; Gillon E; Kotlyar A
    Bioconjug Chem; 2012 May; 23(5):916-22. PubMed ID: 22515478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Exonuclease III-Powered, On-Particle Stochastic DNA Walker.
    Qu X; Zhu D; Yao G; Su S; Chao J; Liu H; Zuo X; Wang L; Shi J; Wang L; Huang W; Pei H; Fan C
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1855-1858. PubMed ID: 28079956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.