These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25980477)

  • 1. Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity.
    Seidu B; Makinde OD; Seini IY
    Acta Biotheor; 2015 Jun; 63(2):151-82. PubMed ID: 25980477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A co-infection model of malaria and cholera diseases with optimal control.
    Okosun KO; Makinde OD
    Math Biosci; 2014 Dec; 258():19-32. PubMed ID: 25245609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal control analysis of malaria-schistosomiasis co-infection dynamics.
    Okosun KO; Smith R
    Math Biosci Eng; 2017 Apr; 14(2):377-405. PubMed ID: 27879105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal control of HIV/AIDS in the workplace in the presence of careless individuals.
    Seidu B; Makinde OD
    Comput Math Methods Med; 2014; 2014():831506. PubMed ID: 25097663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcation and optimal control analysis of HIV/AIDS and COVID-19 co-infection model with numerical simulation.
    Kotola BS; Teklu SW; Abebaw YF
    PLoS One; 2023; 18(5):e0284759. PubMed ID: 37146033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity.
    Okosun KO; Ouifki R; Marcus N
    Biosystems; 2011 Nov; 106(2-3):136-45. PubMed ID: 21843591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control strategies and cost-effectiveness analysis of a malaria model.
    Okosun KO; Rachid O; Marcus N
    Biosystems; 2013 Feb; 111(2):83-101. PubMed ID: 23305627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical analysis of an age-structured model for malaria transmission dynamics.
    Forouzannia F; Gumel AB
    Math Biosci; 2014 Jan; 247():80-94. PubMed ID: 24239674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical analysis of a model for HIV-malaria co-infection.
    Mukandavire Z; Gumel AB; Garira W; Tchuenche JM
    Math Biosci Eng; 2009 Apr; 6(2):333-62. PubMed ID: 19364156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malaria and COVID-19 co-dynamics: A mathematical model and optimal control.
    Tchoumi SY; Diagne ML; Rwezaura H; Tchuenche JM
    Appl Math Model; 2021 Nov; 99():294-327. PubMed ID: 34230748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of chemo-therapy on optimal control of malaria disease with infected immigrants.
    Makinde OD; Okosun KO
    Biosystems; 2011 Apr; 104(1):32-41. PubMed ID: 21219965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does a significant reduction in malaria risk make lopinavir/ritonavir-based ART cost-effective for children with HIV in co-endemic, low-resource settings?
    Ahmed BS; Phelps BR; Reuben EB; Ferris RE
    Trans R Soc Trop Med Hyg; 2014 Jan; 108(1):49-54. PubMed ID: 24300443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of mixed Plasmodium malariae and Plasmodium falciparum infections with partial cross-immunity.
    Chiyaka C; Mukandavire Z; Das P; Nyabadza F; Hove-Musekwa SD; Mwambi H
    J Theor Biol; 2010 Mar; 263(2):169-78. PubMed ID: 19914259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis.
    Nwankwo A; Okuonghae D
    Bull Math Biol; 2018 Mar; 80(3):437-492. PubMed ID: 29282597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of incidence function in backward bifurcation for malaria model with temporary immunity.
    Roop-O P; Chinviriyasit W; Chinviriyasit S
    Math Biosci; 2015 Jul; 265():47-64. PubMed ID: 25916889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Implications of HIV Treatment on the HIV-Malaria Coinfection Dynamics: A Modeling Perspective.
    Nyabadza F; Bekele BT; Rúa MA; Malonza DM; Chiduku N; Kgosimore M
    Biomed Res Int; 2015; 2015():659651. PubMed ID: 26425549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics.
    Childs LM; Buckee CO
    J R Soc Interface; 2015 Mar; 12(104):20141379. PubMed ID: 25673299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling and optimal control of SARS-CoV-2 and tuberculosis co-infection: a case study of Indonesia.
    Rwezaura H; Diagne ML; Omame A; de Espindola AL; Tchuenche JM
    Model Earth Syst Environ; 2022; 8(4):5493-5520. PubMed ID: 35814616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection.
    Agusto FB; ELmojtaba IM
    PLoS One; 2017; 12(2):e0171102. PubMed ID: 28166308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The within-host dynamics of malaria infection with immune response.
    Li Y; Ruan S; Xiao D
    Math Biosci Eng; 2011 Oct; 8(4):999-1018. PubMed ID: 21936597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.