These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25980482)

  • 1. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.
    Joules R; Doyle OM; Schwarz AJ; O'Daly OG; Brammer M; Williams SC; Mehta MA
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4205-18. PubMed ID: 25980482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.
    Shcherbinin S; Doyle O; Zelaya FO; de Simoni S; Mehta MA; Schwarz AJ
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4191-204. PubMed ID: 26223493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the attenuation of the ketamine pharmacological magnetic resonance imaging response in humans: a validation using antipsychotic and glutamatergic agents.
    Doyle OM; De Simoni S; Schwarz AJ; Brittain C; O'Daly OG; Williams SC; Mehta MA
    J Pharmacol Exp Ther; 2013 Apr; 345(1):151-60. PubMed ID: 23370794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists.
    Anand A; Charney DS; Oren DA; Berman RM; Hu XS; Cappiello A; Krystal JH
    Arch Gen Psychiatry; 2000 Mar; 57(3):270-6. PubMed ID: 10711913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study.
    Deakin JF; Lees J; McKie S; Hallak JE; Williams SR; Dursun SM
    Arch Gen Psychiatry; 2008 Feb; 65(2):154-64. PubMed ID: 18250253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network.
    Mueller F; Musso F; London M; de Boer P; Zacharias N; Winterer G
    Neuroimage Clin; 2018; 19():745-757. PubMed ID: 30003027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ketamine-induced brain activation in awake female nonhuman primates: a translational functional imaging model.
    Maltbie E; Gopinath K; Urushino N; Kempf D; Howell L
    Psychopharmacology (Berl); 2016 Mar; 233(6):961-72. PubMed ID: 26660447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia.
    Anticevic A; Corlett PR; Cole MW; Savic A; Gancsos M; Tang Y; Repovs G; Murray JD; Driesen NR; Morgan PT; Xu K; Wang F; Krystal JH
    Biol Psychiatry; 2015 Mar; 77(6):569-80. PubMed ID: 25281999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers.
    De Simoni S; Schwarz AJ; O'Daly OG; Marquand AF; Brittain C; Gonzales C; Stephenson S; Williams SC; Mehta MA
    Neuroimage; 2013 Jan; 64():75-90. PubMed ID: 23009959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketamine-Induced Modulation of the Thalamo-Cortical Network in Healthy Volunteers As a Model for Schizophrenia.
    Höflich A; Hahn A; Küblböck M; Kranz GS; Vanicek T; Windischberger C; Saria A; Kasper S; Winkler D; Lanzenberger R
    Int J Neuropsychopharmacol; 2015 Apr; 18(9):. PubMed ID: 25896256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Ketamine-Induced NMDA Receptor Blockade during Natural Speech Production and Its Implications for Formal Thought Disorder in Schizophrenia: A Pharmaco-fMRI Study.
    Nagels A; Cabanis M; Oppel A; Kirner-Veselinovic A; Schales C; Kircher T
    Neuropsychopharmacology; 2018 May; 43(6):1324-1333. PubMed ID: 29105665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General and emotion-specific neural effects of ketamine during emotional memory formation.
    Becker B; Steffens M; Zhao Z; Kendrick KM; Neumann C; Weber B; Schultz J; Mehta MA; Ettinger U; Hurlemann R
    Neuroimage; 2017 Apr; 150():308-317. PubMed ID: 28232170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia.
    Grent-'t-Jong T; Rivolta D; Gross J; Gajwani R; Lawrie SM; Schwannauer M; Heidegger T; Wibral M; Singer W; Sauer A; Scheller B; Uhlhaas PJ
    Brain; 2018 Aug; 141(8):2511-2526. PubMed ID: 30020423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects.
    Krystal JH; Abi-Saab W; Perry E; D'Souza DC; Liu N; Gueorguieva R; McDougall L; Hunsberger T; Belger A; Levine L; Breier A
    Psychopharmacology (Berl); 2005 Apr; 179(1):303-9. PubMed ID: 15309376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: a translational functional imaging model.
    Gopinath K; Maltbie E; Urushino N; Kempf D; Howell L
    Psychopharmacology (Berl); 2016 Oct; 233(21-22):3673-3684. PubMed ID: 27530989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.
    Driesen NR; McCarthy G; Bhagwagar Z; Bloch MH; Calhoun VD; D'Souza DC; Gueorguieva R; He G; Leung HC; Ramani R; Anticevic A; Suckow RF; Morgan PT; Krystal JH
    Neuropsychopharmacology; 2013 Dec; 38(13):2613-22. PubMed ID: 23856634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia.
    Holcomb HH; Lahti AC; Medoff DR; Cullen T; Tamminga CA
    Neuropsychopharmacology; 2005 Dec; 30(12):2275-82. PubMed ID: 16034443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haloperidol counteracts the ketamine-induced disruption of processing negativity, but not that of the P300 amplitude.
    Oranje B; Gispen-de Wied CC; Westenberg HG; Kemner C; Verbaten MN; Kahn RS
    Int J Neuropsychopharmacol; 2009 Jul; 12(6):823-32. PubMed ID: 19154656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.
    Rivolta D; Heidegger T; Scheller B; Sauer A; Schaum M; Birkner K; Singer W; Wibral M; Uhlhaas PJ
    Schizophr Bull; 2015 Sep; 41(5):1105-14. PubMed ID: 25987642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].
    Mechri A; Saoud M; Khiari G; d'Amato T; Dalery J; Gaha L
    Encephale; 2001; 27(1):53-9. PubMed ID: 11294039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.