These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25980569)

  • 1. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations on the flight paths of the day-flying moth Virbia lamae during periods of mate location: do males have a strategy for contacting the pheromone plume?
    Cardé RT; Cardé AM; Girling RD
    J Anim Ecol; 2012 Jan; 81(1):268-76. PubMed ID: 21729068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking
    Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T
    Elife; 2020 Nov; 9():. PubMed ID: 33140723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigation Along Windborne Plumes of Pheromone and Resource-Linked Odors.
    Cardé RT
    Annu Rev Entomol; 2021 Jan; 66():317-336. PubMed ID: 32926790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
    Liberzon A; Harrington K; Daniel N; Gurka R; Harari A; Zilman G
    PLoS One; 2018; 13(6):e0198422. PubMed ID: 29897978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appetitive flight patterns of male Agrotis segetum moths over landscape scales.
    Reynolds AM; Reynolds DR; Smith AD; Svensson GP; Löfstedt C
    J Theor Biol; 2007 Mar; 245(1):141-9. PubMed ID: 17109897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation Modeling to Interpret the Captures of Moths in Pheromone-Baited Traps Used for Surveillance of Invasive Species: the Gypsy Moth as a Model Case.
    Bau J; Cardé RT
    J Chem Ecol; 2016 Sep; 42(9):877-887. PubMed ID: 27663859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes.
    Girling RD; Cardé RT
    J Chem Ecol; 2007 Oct; 33(10):1927-45. PubMed ID: 17828430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive searching and infotaxis in odor source localization.
    Voges N; Chaffiol A; Lucas P; Martinez D
    PLoS Comput Biol; 2014 Oct; 10(10):e1003861. PubMed ID: 25330317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.
    Willis MA; Arbas EA
    J Comp Physiol A; 1991 Oct; 169(4):427-40. PubMed ID: 1779417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-flight responses of Drosophila melanogaster to attractive odors.
    Budick SA; Dickinson MH
    J Exp Biol; 2006 Aug; 209(Pt 15):3001-17. PubMed ID: 16857884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the role of wind information for efficient chemical plume tracing based on optogenetic silkworm moth behavior.
    Shigaki S; Haigo S; Hernandez Reyes C; Sakurai T; Kanzaki R; Kurabayashi D; Sezutsu H
    Bioinspir Biomim; 2019 May; 14(4):046006. PubMed ID: 31026859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial memory-based behaviors for locating sources of odor plumes.
    Grünbaum D; Willis MA
    Mov Ecol; 2015; 3(1):11. PubMed ID: 25960875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths.
    Vickers NJ; Baker TC
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5756-60. PubMed ID: 11607476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odour plumes and odour-mediated flight in insects.
    Cardé RT
    Ciba Found Symp; 1996; 200():54-66; discussion 66-70. PubMed ID: 8894290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additional Navigational Strategies Can Augment Odor-Gated Rheotaxis for Navigation under Conditions of Variable Flow.
    Vasey G; Lukeman R; Wyeth RC
    Integr Comp Biol; 2015 Sep; 55(3):447-60. PubMed ID: 26116202
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.