These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25980793)

  • 1. Early-life stress increases the survival of midbrain neurons during postnatal development and enhances reward-related and anxiolytic-like behaviors in a sex-dependent fashion.
    Chocyk A; Majcher-Maślanka I; Przyborowska A; Maćkowiak M; Wędzony K
    Int J Dev Neurosci; 2015 Aug; 44():33-47. PubMed ID: 25980793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of maternal separation on the number of tyrosine hydroxylase-expressing midbrain neurons during different stages of ontogenesis.
    Chocyk A; Przyborowska A; Dudys D; Majcher I; Maćkowiak M; Wędzony K
    Neuroscience; 2011 May; 182():43-61. PubMed ID: 21396433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure.
    McArthur S; McHale E; Dalley JW; Buckingham JC; Gillies GE
    J Neuroendocrinol; 2005 Aug; 17(8):475-82. PubMed ID: 16011483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats.
    Chocyk A; Dudys D; Przyborowska A; Majcher I; Maćkowiak M; Wędzony K
    Neuroscience; 2011 Jan; 173():1-18. PubMed ID: 21108994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner.
    McArthur S; McHale E; Gillies GE
    Neuropsychopharmacology; 2007 Jul; 32(7):1462-76. PubMed ID: 17164817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maternal separation alters the reward system of activity-based anorexia rats.
    Aspesi D; Farinetti A; Marraudino M; Morgan GSK; Marzola E; Abbate-Daga G; Gotti S
    Psychoneuroendocrinology; 2021 Nov; 133():105393. PubMed ID: 34481327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal separation disturbs postnatal development of the medial prefrontal cortex and affects the number of neurons and glial cells in adolescent rats.
    Majcher-Maślanka I; Solarz A; Chocyk A
    Neuroscience; 2019 Dec; 423():131-147. PubMed ID: 31705889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Somatic Ca2+ Channel Profile in Midbrain Dopaminergic Neurons.
    Philippart F; Destreel G; Merino-Sepúlveda P; Henny P; Engel D; Seutin V
    J Neurosci; 2016 Jul; 36(27):7234-45. PubMed ID: 27383597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra.
    Aumann TD
    J Chem Neuroanat; 2016 Apr; 73():21-32. PubMed ID: 26718607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs.
    Seroogy KB; Lundgren KH; Tran TM; Guthrie KM; Isackson PJ; Gall CM
    J Comp Neurol; 1994 Apr; 342(3):321-34. PubMed ID: 7912699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring.
    Peña CJ; Neugut YD; Calarco CA; Champagne FA
    Eur J Neurosci; 2014 Mar; 39(6):946-956. PubMed ID: 24446918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of functional duplicity of Nestin expression in the adult mouse midbrain.
    Farzanehfar P; Lu SS; Dey A; Musiienko D; Baagil H; Horne MK; Aumann TD
    Stem Cell Res; 2017 Mar; 19():82-93. PubMed ID: 28088038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of prenatal nicotine on the structure of midbrain dopamine regions in the rat.
    Omelchenko N; Roy P; Balcita-Pedicino JJ; Poloyac S; Sesack SR
    Brain Struct Funct; 2016 May; 221(4):1939-53. PubMed ID: 25716298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GFRalpha-1 mRNA in dopaminergic and nondopaminergic neurons in the substantia nigra and ventral tegmental area.
    Sarabi A; Hoffer BJ; Olson L; Morales M
    J Comp Neurol; 2001 Dec; 441(2):106-17. PubMed ID: 11745638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesolimbic dopaminergic activity responding to acute stress is blunted in adolescent rats that experienced neonatal maternal separation.
    Jahng JW; Ryu V; Yoo SB; Noh SJ; Kim JY; Lee JH
    Neuroscience; 2010 Nov; 171(1):144-52. PubMed ID: 20828601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex-specific disruption of murine midbrain astrocytic and dopaminergic developmental trajectories following antenatal GC treatment.
    McArthur S; Pienaar IS; Siddiqi SM; Gillies GE
    Brain Struct Funct; 2016 Jun; 221(5):2459-75. PubMed ID: 25944572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal exposure to methamphetamine in the rat: ontogeny of tyrosine hydroxylase mRNA expression in mesencephalic dopaminergic neurons.
    Gomes-da-Silva J; Pérez-Rosado A; de Miguel R; Fernández-Ruiz J; Silva MC; Tavares MA
    Ann N Y Acad Sci; 2002 Jun; 965():68-77. PubMed ID: 12105086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse.
    Bayer SA; Wills KV; Triarhou LC; Ghetti B
    Exp Brain Res; 1995; 105(2):191-9. PubMed ID: 7498372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain.
    Hensleigh E; Pritchard LM
    Neurosci Lett; 2013 Nov; 556():191-5. PubMed ID: 24121048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early-life Stress Modifies the Reactivity of Neurons in the Ventral Tegmental Area and Lateral Hypothalamus to Acute Stress in Female Rats.
    Gugula A; Trenk A; Celary A; Cizio K; Tylko G; Blasiak A; Hess G
    Neuroscience; 2022 May; 490():49-65. PubMed ID: 35202782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.