These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 25980853)

  • 1. ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA.
    Abbaspour S; Lindén M; Gholamhosseini H
    Stud Health Technol Inform; 2015; 211():91-7. PubMed ID: 25980853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated ECG-artifact removal method for trunk muscle surface EMG recordings.
    Mak JN; Hu Y; Luk KD
    Med Eng Phys; 2010 Oct; 32(8):840-8. PubMed ID: 20561810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time ECG artifact removal for myoelectric prosthesis control.
    Zhou P; Lock B; Kuiken TA
    Physiol Meas; 2007 Apr; 28(4):397-413. PubMed ID: 17395995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of independent component analysis to ECG cancellation in surface electromyography measurement].
    Cao Y; Chen C; Hu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):686-9. PubMed ID: 16156250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach for removing ECG interferences from surface EMG signals using a combined ANFIS and wavelet.
    Abbaspour S; Fallah A; Lindén M; Gholamhosseini H
    J Electromyogr Kinesiol; 2016 Feb; 26():52-9. PubMed ID: 26643795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removing ECG contamination from EMG recordings: a comparison of ICA-based and other filtering procedures.
    Willigenburg NW; Daffertshofer A; Kingma I; van Dieën JH
    J Electromyogr Kinesiol; 2012 Jun; 22(3):485-93. PubMed ID: 22296869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of the electrocardiogram signal from surface EMG recordings using non-linearly scaled wavelets.
    von Tscharner V; Eskofier B; Federolf P
    J Electromyogr Kinesiol; 2011 Aug; 21(4):683-8. PubMed ID: 21470876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interpretation of abdominal wall muscle recruitment strategies change when the electrocardiogram (ECG) is removed from the electromyogram (EMG).
    Butler HL; Newell R; Hubley-Kozey CL; Kozey JW
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e102-13. PubMed ID: 18055221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECG artifact cancellation in surface EMG signals by fractional order calculus application.
    Miljković N; Popović N; Djordjević O; Konstantinović L; Šekara TB
    Comput Methods Programs Biomed; 2017 Mar; 140():259-264. PubMed ID: 28254082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Empirical Mode Decomposition Combined With Notch Filtering for Interpretation of Surface Electromyograms During Functional Electrical Stimulation.
    Pilkar R; Yarossi M; Ramanujam A; Rajagopalan V; Bayram MB; Mitchell M; Canton S; Forrest G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1268-1277. PubMed ID: 27834646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive filtering for ECG rejection from surface EMG recordings.
    Marque C; Bisch C; Dantas R; Elayoubi S; Brosse V; Pérot C
    J Electromyogr Kinesiol; 2005 Jun; 15(3):310-5. PubMed ID: 15763678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems.
    Xu X; Liang Y; He P; Yang J
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31266226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography.
    Xu L; Peri E; Vullings R; Rabotti C; Van Dijk JP; Mischi M
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing ECG noise from surface EMG signals using adaptive filtering.
    Lu G; Brittain JS; Holland P; Yianni J; Green AL; Stein JF; Aziz TZ; Wang S
    Neurosci Lett; 2009 Oct; 462(1):14-9. PubMed ID: 19559751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method to remove ECG artifacts from trunk muscle EMG signals.
    Hof AL
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e554-5. PubMed ID: 19121951
    [No Abstract]   [Full Text] [Related]  

  • 16. A wavelet-based adaptive filter for removing ECG interference in EMGdi signals.
    Zhan C; Yeung LF; Yang Z
    J Electromyogr Kinesiol; 2010 Jun; 20(3):542-9. PubMed ID: 19692270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new algorithm for ECG interference removal from single channel EMG recording.
    Yazdani S; Azghani MR; Sedaaghi MH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):575-584. PubMed ID: 28733932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.
    El B'charri O; Latif R; Elmansouri K; Abenaou A; Jenkal W
    Biomed Eng Online; 2017 Feb; 16(1):26. PubMed ID: 28173806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference Removal From Electromyography Based on Independent Component Analysis.
    Zheng Y; Hu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):887-894. PubMed ID: 30990188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subspace based adaptive denoising of surface EMG from neurological injury patients.
    Liu J; Ying D; Zev Rymer W; Zhou P
    J Neural Eng; 2014 Oct; 11(5):056025. PubMed ID: 25242507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.