These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25980871)

  • 1. Encapsulation for smart textile electronics - humidity and temperature sensor.
    Larsson A; Tran TN; Aasmundtveit KE; Seeberg TM
    Stud Health Technol Inform; 2015; 211():207-12. PubMed ID: 25980871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments.
    Zhou G; Byun JH; Oh Y; Jung BM; Cha HJ; Seong DG; Um MK; Hyun S; Chou TW
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4788-4797. PubMed ID: 28098454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.
    Lee J; Kwon H; Seo J; Shin S; Koo JH; Pang C; Son S; Kim JH; Jang YH; Kim DE; Lee T
    Adv Mater; 2015 Apr; 27(15):2433-9. PubMed ID: 25692572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring in-shoe plantar pressures, temperature, and humidity: reliability and validity of measures from a portable device.
    Maluf KS; Morley RE; Richter EJ; Klaesner JW; Mueller MJ
    Arch Phys Med Rehabil; 2001 Aug; 82(8):1119-27. PubMed ID: 11494193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing.
    Wang H; Wang H; Wang Y; Su X; Wang C; Zhang M; Jian M; Xia K; Liang X; Lu H; Li S; Zhang Y
    ACS Nano; 2020 Mar; 14(3):3219-3226. PubMed ID: 32083839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FREE FORMALDEHYDE IN TEXTILES IN RELATION TO FORMALIN CONTACT SENSITIVITY.
    BERRENS L; YOUNG E; JANSEN LH
    Br J Dermatol; 1964 Mar; 76():110-5. PubMed ID: 14128257
    [No Abstract]   [Full Text] [Related]  

  • 7. Recent Trends, Construction, and Applications of Smart Textiles and Clothing for Monitoring of Health Activity: A Comprehensive Multidisciplinary Review.
    Kubicek J; Fiedorova K; Vilimek D; Cerny M; Penhaker M; Janura M; Rosicky J
    IEEE Rev Biomed Eng; 2022; 15():36-60. PubMed ID: 33301410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Fluffy Fabric with In Situ Grown Carbon Nanotubes for Ultrasensitive Wearable Airflow Sensor.
    Wang H; Li S; Wang Y; Wang H; Shen X; Zhang M; Lu H; He M; Zhang Y
    Adv Mater; 2020 Mar; 32(11):e1908214. PubMed ID: 32009282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wearable Textile Thermograph.
    Lugoda P; Hughes-Riley T; Morris R; Dias T
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing.
    Wu R; Ma L; Hou C; Meng Z; Guo W; Yu W; Yu R; Hu F; Liu XY
    Small; 2019 Aug; 15(31):e1901558. PubMed ID: 31116907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection.
    Yang Z; Pang Y; Han XL; Yang Y; Ling J; Jian M; Zhang Y; Yang Y; Ren TL
    ACS Nano; 2018 Sep; 12(9):9134-9141. PubMed ID: 30134097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intelligent Medical Garments with Graphene-Functionalized Smart-Cloth ECG Sensors.
    Yapici MK; Alkhidir TE
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.
    Lee J; Shin S; Lee S; Song J; Kang S; Han H; Kim S; Kim S; Seo J; Kim D; Lee T
    ACS Nano; 2018 May; 12(5):4259-4268. PubMed ID: 29617111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring.
    Trung TQ; Le HS; Dang TML; Ju S; Park SY; Lee NE
    Adv Healthc Mater; 2018 Jun; 7(12):e1800074. PubMed ID: 29749708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Temperature Sensor Integration into E-Textiles Using Different Industrial Yarn Fabrication Processes.
    Lugoda P; Costa JC; Oliveira C; Garcia-Garcia LA; Wickramasinghe SD; Pouryazdan A; Roggen D; Dias T; Münzenrieder N
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nylon Fabric/GO Based Self-Powered Humidity Sensor Based on the Galvanic Cell Principle with High Air Permeability and Rapid-Response.
    Lu W; Zhang Q; Liu N; Lei D; Ren Z; Yin J; Jia P; Gao Y
    Small; 2024 Mar; 20(10):e2306463. PubMed ID: 37899294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance flexible electronics for biomedical devices.
    Salvatore GA; Munzenrieder N; Zysset C; Kinkeldei T; Petti L; Troster G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4176-9. PubMed ID: 25570912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a system to measure local measurement conditions around textile electrodes.
    Kim S; Oliveira J; Roethlingshoefer L; Leonhard S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4975-8. PubMed ID: 21096676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological significance of hydrophilic and hydrophobic textile materials during intermittent exercise in humans under the influence of warm ambient temperature with and without wind.
    Kwon A; Kato M; Kawamura H; Yanai Y; Tokura H
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):487-93. PubMed ID: 9840402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Textile-Integrated Thermocouples for Temperature Measurement.
    Root W; Bechtold T; Pham T
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.