These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 25980933)
1. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats. Han Y; Zheng G; Yang T; Zhang S; Dong D; Pan YH BMC Evol Biol; 2015 May; 15():88. PubMed ID: 25980933 [TBL] [Abstract][Full Text] [Related]
2. Adaptation of the FK506 binding protein 1B to hibernation in bats. Liu D; Zheng S; Zheng G; Lv Q; Shen B; Yuan X; Pan YH Cryobiology; 2018 Aug; 83():1-8. PubMed ID: 30056853 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant Defenses in the Brains of Bats during Hibernation. Yin Q; Ge H; Liao CC; Liu D; Zhang S; Pan YH PLoS One; 2016; 11(3):e0152135. PubMed ID: 27010916 [TBL] [Abstract][Full Text] [Related]
4. Gene expression and adaptive evolution of ZBED1 in the hibernating greater horseshoe bat (Rhinolophus ferrumequinum). Xiao Y; Wu Y; Sun K; Wang H; Jiang T; Lin A; Huang X; Yue X; Shi L; Feng J J Exp Biol; 2016 Mar; 219(Pt 6):834-43. PubMed ID: 26787476 [TBL] [Abstract][Full Text] [Related]
5. Differential regulation of peroxisome proliferator-activated receptor (PPAR)-alpha1 and truncated PPARalpha2 as an adaptive response to fasting in the control of hepatic peroxisomal fatty acid beta-oxidation in the hibernating mammal. El Kebbaj Z; Andreoletti P; Mountassif D; Kabine M; Schohn H; Dauça M; Latruffe N; El Kebbaj MS; Cherkaoui-Malki M Endocrinology; 2009 Mar; 150(3):1192-201. PubMed ID: 18948393 [TBL] [Abstract][Full Text] [Related]
6. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. Pan YH; Zhang Y; Cui J; Liu Y; McAllan BM; Liao CC; Zhang S PLoS One; 2013; 8(4):e62039. PubMed ID: 23620802 [TBL] [Abstract][Full Text] [Related]
7. Differential expression and functional constraint of PRL-2 in hibernating bat. Yuan L; Chen J; Lin B; Zhang J; Zhang S Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):375-81. PubMed ID: 17683965 [TBL] [Abstract][Full Text] [Related]
8. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. Lei M; Dong D; Mu S; Pan YH; Zhang S PLoS One; 2014; 9(9):e107746. PubMed ID: 25251558 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by Rosner E; Voigt CC J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29361583 [TBL] [Abstract][Full Text] [Related]
10. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. Yin Q; Zhang Y; Dong D; Lei M; Zhang S; Liao CC; Pan YH Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1004-1019. PubMed ID: 28473298 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional studies of leptins from hibernating and non-hibernating bats. He L; Pan Y; He G; Lin B; Liao CC; Zuo X; Yuan L Gen Comp Endocrinol; 2010 Aug; 168(1):29-35. PubMed ID: 20394750 [TBL] [Abstract][Full Text] [Related]
12. Differential Expression of Hepatic Genes of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) between the Summer Active and Winter Torpid States. Xiao Y; Wu Y; Sun K; Wang H; Zhang B; Song S; Du Z; Jiang T; Shi L; Wang L; Lin A; Yue X; Li C; Chen T; Feng J PLoS One; 2015; 10(12):e0145702. PubMed ID: 26698122 [TBL] [Abstract][Full Text] [Related]
13. Urinary creatinine varies with microenvironment and sex in hibernating Greater Horseshoe bats (Rhinolophus ferrumequinum) in Korea. Ryu H; Kinoshita K; Joo S; Kim SS BMC Ecol Evol; 2021 May; 21(1):77. PubMed ID: 33947328 [TBL] [Abstract][Full Text] [Related]
14. Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). Czenze ZJ; Willis CK J Comp Physiol B; 2015 Jul; 185(5):575-86. PubMed ID: 25809999 [TBL] [Abstract][Full Text] [Related]
15. Long-term patterns of cave-exiting activity of hibernating bats in western North America. Whiting JC; Doering B; Aho K; Rich J Sci Rep; 2021 Apr; 11(1):8175. PubMed ID: 33854126 [TBL] [Abstract][Full Text] [Related]
16. CYTOCHEMICAL DIFFERENCES IN KIDNEYS FROM WINTER HIBERNATING AND AROUSED BATS (MYOTIS LUCIFUGUS), WITH PARTICULAR REFERENCE TO THE GOLGI ZONE. ROSENBAUM RM; MELMAN A J Cell Biol; 1964 Jun; 21(3):325-37. PubMed ID: 14189909 [TBL] [Abstract][Full Text] [Related]
17. Hibernation energetics of free-ranging little brown bats. Jonasson KA; Willis CK J Exp Biol; 2012 Jun; 215(Pt 12):2141-9. PubMed ID: 22623203 [TBL] [Abstract][Full Text] [Related]
18. Physiological and behavioural adaptations by big brown bats hibernating in dry rock crevices. Klüg-Baerwald BJ; Lausen CL; Burns SM; Brigham RM J Comp Physiol B; 2024 Apr; 194(2):203-212. PubMed ID: 38587619 [TBL] [Abstract][Full Text] [Related]