BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25981048)

  • 21. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.
    Zhao F; Bai P; Liu T; Li D; Zhang X; Lu W; Yuan Y
    Biotechnol Bioeng; 2016 Aug; 113(8):1787-95. PubMed ID: 26757342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.
    Wei W; Wang P; Wei Y; Liu Q; Yang C; Zhao G; Yue J; Yan X; Zhou Z
    Mol Plant; 2015 Sep; 8(9):1412-24. PubMed ID: 26032089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng.
    Tansakul P; Shibuya M; Kushiro T; Ebizuka Y
    FEBS Lett; 2006 Oct; 580(22):5143-9. PubMed ID: 16962103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius.
    Wang L; Zhao SJ; Liang YL; Sun Y; Cao HJ; Han Y
    Funct Integr Genomics; 2014 Sep; 14(3):559-70. PubMed ID: 25056561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous synthesis of ginsenoside F1 and its precursors in Nicotiana benthamiana.
    Chen Q; Lei J; Li X; Zhang J; Liu D; Cui X; Ge F
    J Plant Physiol; 2024 Aug; 299():154276. PubMed ID: 38801806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides.
    Dai Z; Liu Y; Zhang X; Shi M; Wang B; Wang D; Huang L; Zhang X
    Metab Eng; 2013 Nov; 20():146-56. PubMed ID: 24126082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng.
    Han JY; Kwon YS; Yang DC; Jung YR; Choi YE
    Plant Cell Physiol; 2006 Dec; 47(12):1653-62. PubMed ID: 17088293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progress on the Studies of the Key Enzymes of Ginsenoside Biosynthesis.
    Yang JL; Hu ZF; Zhang TT; Gu AD; Gong T; Zhu P
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29509695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions.
    Hu Y; Xue J; Min J; Qin L; Zhang J; Dai L
    J Biotechnol; 2020 Feb; 309():107-112. PubMed ID: 31926981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of three groups of ginsenoside biosynthetic UDP-glycosyltransferases from Gynostemma pentaphyllum.
    Le DD; Kim W; Lim S; Kim SC; Choi G
    Plant Sci; 2021 Dec; 313():111069. PubMed ID: 34763860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic preparation of 20(S, R)-protopanaxadiol by transformation of 20(S, R)-Rg3 from black ginseng.
    Liu L; Zhu XM; Wang QJ; Zhang DL; Fang ZM; Wang CY; Wang Z; Sun BS; Wu H; Sung CK
    Phytochemistry; 2010 Sep; 71(13):1514-20. PubMed ID: 20576280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construct a gene-to-metabolite network to screen the key genes of triterpene saponin biosynthetic pathway in Panax notoginseng.
    Wang N; Wang L; Qi L; Lu X
    Biotechnol Appl Biochem; 2018 Mar; 65(2):119-127. PubMed ID: 28779486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of action of ginsenoside Rh2: uptake and metabolism of ginsenoside Rh2 by cultured B16 melanoma cells.
    Ota T; Maeda M; Odashima S
    J Pharm Sci; 1991 Dec; 80(12):1141-6. PubMed ID: 1815072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts.
    Wang P; Wei Y; Fan Y; Liu Q; Wei W; Yang C; Zhang L; Zhao G; Yue J; Yan X; Zhou Z
    Metab Eng; 2015 May; 29():97-105. PubMed ID: 25769286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ginsenosides in
    Hou M; Wang R; Zhao S; Wang Z
    Acta Pharm Sin B; 2021 Jul; 11(7):1813-1834. PubMed ID: 34386322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference.
    Zhao C; Xu T; Liang Y; Zhao S; Ren L; Wang Q; Dou B
    Plant Cell Rep; 2015 Aug; 34(8):1307-15. PubMed ID: 25899218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana.
    Khakimov B; Kuzina V; Erthmann PØ; Fukushima EO; Augustin JM; Olsen CE; Scholtalbers J; Volpin H; Andersen SB; Hauser TP; Muranaka T; Bak S
    Plant J; 2015 Nov; 84(3):478-90. PubMed ID: 26333142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method.
    Ko SR; Suzuki Y; Suzuki K; Choi KJ; Cho BG
    Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1522-7. PubMed ID: 17917300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae.
    Kim JE; Jang IS; Sung BH; Kim SC; Lee JY
    Sci Rep; 2018 Oct; 8(1):15820. PubMed ID: 30361526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Producing aglycons of ginsenosides in bakers' yeast.
    Dai Z; Wang B; Liu Y; Shi M; Wang D; Zhang X; Liu T; Huang L; Zhang X
    Sci Rep; 2014 Jan; 4():3698. PubMed ID: 24424342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.