These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25981263)

  • 1. Next-generation sequencing of elite berry germplasm and data analysis using a bioinformatics pipeline for virus detection and discovery.
    Ho T; Martin RR; Tzanetakis IE
    Methods Mol Biol; 2015; 1302():301-13. PubMed ID: 25981263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic next-generation sequencing of viruses infecting grapevines.
    Burger JT; Maree HJ
    Methods Mol Biol; 2015; 1302():315-30. PubMed ID: 25981264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies.
    Maliogka VI; Minafra A; Saldarelli P; Ruiz-García AB; Glasa M; Katis N; Olmos A
    Viruses; 2018 Aug; 10(8):. PubMed ID: 30126105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current impact and future directions of high throughput sequencing in plant virus diagnostics.
    Massart S; Olmos A; Jijakli H; Candresse T
    Virus Res; 2014 Aug; 188():90-6. PubMed ID: 24717426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of high-throughput DNA sequencing in phytopathology.
    Studholme DJ; Glover RH; Boonham N
    Annu Rev Phytopathol; 2011; 49():87-105. PubMed ID: 21548771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine.
    Al Rwahnih M; Daubert S; Golino D; Islas C; Rowhani A
    Phytopathology; 2015 Jun; 105(6):758-63. PubMed ID: 25689518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of pome and stone fruit virus diseases.
    Barba M; Ilardi V; Pasquini G
    Adv Virus Res; 2015; 91():47-83. PubMed ID: 25591877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus testing by PCR and RT-PCR amplification in berry fruit.
    MacFarlane S; McGavin W; Tzanetakis I
    Methods Mol Biol; 2015; 1302():227-48. PubMed ID: 25981258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a virus detection and discovery pipeline using next generation sequencing.
    Ho T; Tzanetakis IE
    Virology; 2014 Dec; 471-473():54-60. PubMed ID: 25461531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-RNA analysis of pre-basic mother plants and conserved accessions of plant genetic resources for the presence of viruses.
    Rajamäki ML; Lemmetty A; Laamanen J; Roininen E; Vishwakarma A; Streng J; Latvala S; Valkonen JPT
    PLoS One; 2019; 14(8):e0220621. PubMed ID: 31390343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Virus Metagenomics: Advances in Virus Discovery.
    Roossinck MJ; Martin DP; Roumagnac P
    Phytopathology; 2015 Jun; 105(6):716-27. PubMed ID: 26056847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops.
    Villamor DEV; Keller KE; Martin RR; Tzanetakis IE
    Plant Dis; 2022 Feb; 106(2):518-525. PubMed ID: 34282931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of virus diseases of berry crops.
    Martin RR; Tzanetakis IE
    Adv Virus Res; 2015; 91():271-309. PubMed ID: 25591882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of siRNAs for Diagnosis of Viruses Associated to Woody Plants in Nurseries and Stock Collections.
    Czotter N; Molnár J; Pesti R; Demián E; Baráth D; Varga T; Várallyay É
    Methods Mol Biol; 2018; 1746():115-130. PubMed ID: 29492890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep sequencing for discovery and evolutionary analysis of plant viruses.
    Roossinck MJ
    Virus Res; 2017 Jul; 239():82-86. PubMed ID: 27876625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted virus detection in next-generation sequencing data using an automated e-probe based approach.
    Visser M; Burger JT; Maree HJ
    Virology; 2016 Aug; 495():122-8. PubMed ID: 27209446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of a novel DNA virus with the grapevine vein-clearing and vine decline syndrome.
    Zhang Y; Singh K; Kaur R; Qiu W
    Phytopathology; 2011 Sep; 101(9):1081-90. PubMed ID: 21554183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral Metagenomics Approaches for High-Resolution Screening of Multiplexed Arthropod and Plant Viral Communities.
    François S; Filloux D; Fernandez E; Ogliastro M; Roumagnac P
    Methods Mol Biol; 2018; 1746():77-95. PubMed ID: 29492888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kodoja: A workflow for virus detection in plants using k-mer analysis of RNA-sequencing data.
    Baizan-Edge A; Cock P; MacFarlane S; McGavin W; Torrance L; Jones S
    J Gen Virol; 2019 Mar; 100(3):533-542. PubMed ID: 30676315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of strawberry vein banding virus by a non-radioactive probe.
    Mráz I; Honetslegrová J; Síp M
    Acta Virol; 1996 Jun; 40(3):139-41. PubMed ID: 8891093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.