These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 2598137)
1. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum. Narayanan N; Bedard P; Waraich TS Can J Physiol Pharmacol; 1989 Sep; 67(9):999-1006. PubMed ID: 2598137 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum. Narayanan N; Su N; Bedard P Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of sarcoplasmic reticulum calcium pump by cytosolic protein(s) endogenous to heart and slow skeletal muscle but not fast skeletal muscle. Narayanan N; Newland M; Neudorf D Biochim Biophys Acta; 1983 Oct; 735(1):53-66. PubMed ID: 6313055 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the ATP-dependent calcium uptake activity of heart sarcolemmal vesicles by endogenous cytosolic proteins. Narayanan N; Bedard P; Waraich TS; Godfrey N Mol Cell Biochem; 1989 Apr; 86(2):143-53. PubMed ID: 2549389 [TBL] [Abstract][Full Text] [Related]
5. An endogenous positive inotropic factor (EPIF) from porcine heart: its effects on sarcoplasmic reticular (SR) Ca2+ metabolism. Khatter JC; Agbanyo M; Bose D; Hoeschen RJ Mol Cell Biochem; 1997 Nov; 176(1-2):163-8. PubMed ID: 9406158 [TBL] [Abstract][Full Text] [Related]
6. Lack of effects of calcium X calmodulin-dependent phosphorylation on Ca2+ release from cardiac sarcoplasmic reticulum. Kim HW; Kim DH; Ikemoto N; Kranias EG Biochim Biophys Acta; 1987 Oct; 903(2):333-40. PubMed ID: 2443173 [TBL] [Abstract][Full Text] [Related]
7. [Steady-state calcium accumulation and its reduction by caffeine in sarcoplasmic reticulum from masseter muscle]. Saito G Kanagawa Shigaku; 1989 Jun; 24(1):169-81. PubMed ID: 2562274 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a calcium-sensitive factor which alters the alkaline pH sensitivity of sarcoplasmic reticulum calcium transport. Tate CA; Chu A; McMillin-Wood J; Van Winkle WB; Entman ML J Biol Chem; 1981 Mar; 256(6):2934-9. PubMed ID: 6451623 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C; Xu A; Narayanan N Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909 [TBL] [Abstract][Full Text] [Related]
10. Comparative effects of inorganic phosphate and oxalate on uptake and release of Ca2+ by the sarcoplasmic reticulum in saponin skinned rat cardiac trabeculae. Steele DS; McAinsh AM; Smith GL J Physiol; 1996 Feb; 490 ( Pt 3)(Pt 3):565-76. PubMed ID: 8683457 [TBL] [Abstract][Full Text] [Related]
11. [Effect of compound 48/80 on masseter muscle sarcoplasmic reticulum calcium transport system]. Odajima C Kanagawa Shigaku; 1989 Dec; 24(3):431-9. PubMed ID: 2562276 [TBL] [Abstract][Full Text] [Related]
12. Ryanodine and an iodinated analog: doxorubicin effects on binding and Ca2+ accumulation in cardiac sarcoplasmic reticulum. Bowling N; Mais DE; Gerzon K; Watanabe AM Eur J Pharmacol; 1994 Aug; 268(3):365-73. PubMed ID: 7805760 [TBL] [Abstract][Full Text] [Related]
13. Osmotic changes of sarcoplasmic reticulum vesicles during Ca2+ uptake. Beeler T J Membr Biol; 1983; 76(2):165-71. PubMed ID: 6227751 [TBL] [Abstract][Full Text] [Related]
14. Lysophospholipid-mediated alterations in the calcium transport systems of skeletal and cardiac muscle sarcoplasmic reticulum. Ambudkar IS; Abdallah ES; Shamoo AE Mol Cell Biochem; 1988 Jan; 79(1):81-9. PubMed ID: 2967426 [TBL] [Abstract][Full Text] [Related]
15. Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum. Netticadan T; Xu A; Narayanan N Arch Biochem Biophys; 1996 Sep; 333(2):368-76. PubMed ID: 8809075 [TBL] [Abstract][Full Text] [Related]
16. The effect of pH on the calcium dependence of calcium accumulation in dog cardiac muscle sarcoplasmic reticulum. Grassi de Gende AO J Mol Cell Cardiol; 1988 Dec; 20(12):1087-93. PubMed ID: 2977801 [TBL] [Abstract][Full Text] [Related]
17. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum. Plank B; Wyskovsky W; Hellmann G; Suko J Biochim Biophys Acta; 1983 Jul; 732(1):99-109. PubMed ID: 6307368 [TBL] [Abstract][Full Text] [Related]
18. Ontogeny of cytosolic proteins capable of modulating sarcoplasmic reticulum calcium transport in heart muscle. Donat ME; Su N; Narayanan N Mol Cell Biochem; 1991 Jul; 106(1):41-8. PubMed ID: 1922013 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Ca2+ release from the sarcoplasmic reticulum of myocardium and vascular smooth muscle. Benevolensky DS; Menshikova EV; Watras J; Levitsky DO; Ritov VB Biomed Biochim Acta; 1987; 46(8-9):S393-8. PubMed ID: 3501718 [TBL] [Abstract][Full Text] [Related]
20. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum. Lau YH Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]