These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25981455)

  • 41. Synthesis of Nickel Spinel Ferrites Nanoparticles Coated with Thermally Reduced Graphene Oxide for EMI Shielding in the Microwave, UV, and NIR Regions.
    Mansha A; Zubair K; Rehan ZA; Shakir HMF; Javed T; Shabbir R; Mustafa SK; Mora-Poblete F; Zhou JR; Kumar U; Al-Harbi MS; Hassan MM
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attenuating microwave radiation by absorption through controlled nanoparticle localization in PC/PVDF blends.
    Biswas S; Kar GP; Bose S
    Phys Chem Chem Phys; 2015 Nov; 17(41):27698-712. PubMed ID: 26431367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electromagnetic Interference Shielding Performance of Anisotropic Polyimide/Graphene Composite Aerogels.
    Yu Z; Dai T; Yuan S; Zou H; Liu P
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30990-31001. PubMed ID: 32544318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films.
    Xu Y; Qian K; Deng D; Luo L; Ye J; Wu H; Miao M; Feng X
    Carbohydr Polym; 2020 Dec; 250():116915. PubMed ID: 33049887
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Cheng K; Li H; Zhu M; Qiu H; Yang J
    RSC Adv; 2020 Jan; 10(4):2368-2377. PubMed ID: 35494588
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication and Characterization of Waste Wood Cellulose Fiber/Graphene Nanoplatelet Carbon Papers for Application as Electromagnetic Interference Shielding Materials.
    Park J; Kwac LK; Kim HG; Shin HK
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835643
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding.
    Verma M; Singh AP; Sambyal P; Singh BP; Dhawan SK; Choudhary V
    Phys Chem Chem Phys; 2015 Jan; 17(3):1610-8. PubMed ID: 25437769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance.
    Hsiao ST; Ma CC; Liao WH; Wang YS; Li SM; Huang YC; Yang RB; Liang WF
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10667-78. PubMed ID: 24921939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties.
    Zhang L; Liu M; Bi S; Yang L; Roy S; Tang XZ; Mu C; Hu X
    J Colloid Interface Sci; 2017 May; 493():327-333. PubMed ID: 28119243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phase miscibility and dynamic heterogeneity in PMMA/SAN blends through solvent free reactive grafting of SAN on graphene oxide.
    Muzata TS; P L J; Kar GP; Bose S
    Phys Chem Chem Phys; 2018 Jul; 20(29):19470-19485. PubMed ID: 29998240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding.
    Ru J; Fan Y; Zhou W; Zhou Z; Wang T; Liu R; Yang J; Lu X; Wang J; Ji C; Wang L; Jiang W
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39245-39256. PubMed ID: 30346124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of Multi-Functional Graphene Polymer Composites Having Electromagnetic Interference Shielding and De-Icing Properties.
    Ha JH; Hong SK; Ryu JK; Bae J; Park SH
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31847400
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible Polydimethylsilane Nanocomposites Enhanced with a Three-Dimensional Graphene/Carbon Nanotube Bicontinuous Framework for High-Performance Electromagnetic Interference Shielding.
    Zhao S; Yan Y; Gao A; Zhao S; Cui J; Zhang G
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26723-26732. PubMed ID: 29989792
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming.
    Hamidinejad M; Zhao B; Zandieh A; Moghimian N; Filleter T; Park CB
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30752-30761. PubMed ID: 30124039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Preparation of Compressible and Fire-Resistant Sponge-Supported Reduced Graphene Oxide Aerogel for Electromagnetic Interference Shielding.
    Liu C; Ye S; Feng J
    Chem Asian J; 2016 Sep; 11(18):2586-93. PubMed ID: 27537614
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application.
    Singh AP; Mishra M; Chandra A; Dhawan SK
    Nanotechnology; 2011 Nov; 22(46):465701. PubMed ID: 22024967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.
    Wang Y; Gu FQ; Ni LJ; Liang K; Marcus K; Liu SL; Yang F; Chen JJ; Feng ZS
    Nanoscale; 2017 Nov; 9(46):18318-18325. PubMed ID: 29143001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quick Heat Dissipation in Absorption-Dominated Microwave Shielding Properties of Flexible Poly(vinylidene fluoride)/Carbon Nanotube/Co Composite Films with Anisotropy-Shaped Co (Flowers or Chains).
    Li X; Zeng S; E S; Liang L; Bai Z; Zhou Y; Zhao B; Zhang R
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40789-40799. PubMed ID: 30383960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance.
    Li L; Cao Y; Liu X; Wang J; Yang Y; Wang W
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27350-27360. PubMed ID: 32437119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.
    Zhang J; Li J; Tan G; Hu R; Wang J; Chang C; Wang X
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42192-42199. PubMed ID: 29124926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.