BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25981468)

  • 1. High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium.
    Sola C; Abadia E; Le Hello S; Weill FX
    Methods Mol Biol; 2015; 1311():91-109. PubMed ID: 25981468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex.
    Botelho A; Canto A; Leão C; Cunha MV
    Methods Mol Biol; 2015; 1247():373-89. PubMed ID: 25399110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbead-based spoligotyping of Mycobacterium tuberculosis from Ziehl-Neelsen-stained microscopy preparations in Ethiopia.
    Molina-Moya B; Agonafir M; Blanco S; Dacombe R; Gomgnimbou MK; Spinasse L; Gomes-Fernandes M; Datiko DG; Edwards T; Cuevas LE; Dominguez J; Sola C
    Sci Rep; 2018 Mar; 8(1):3987. PubMed ID: 29507363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex.
    Sola C
    Tuberculosis (Edinb); 2015 Jun; 95 Suppl 1():S159-66. PubMed ID: 25748060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method.
    Abadia E; Zhang J; dos Vultos T; Ritacco V; Kremer K; Aktas E; Matsumoto T; Refregier G; van Soolingen D; Gicquel B; Sola C
    Infect Genet Evol; 2010 Oct; 10(7):1066-74. PubMed ID: 20624486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Luminex MagPlex magnetic microspheres for high-throughput spoligotyping of Mycobacterium tuberculosis isolates in Port-au-Prince, Haiti.
    Ocheretina O; Merveille YM; Mabou MM; Escuyer VE; Dunbar SA; Johnson WD; Pape JW; Fitzgerald DW
    J Clin Microbiol; 2013 Jul; 51(7):2232-7. PubMed ID: 23658258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology.
    Brudey K; Driscoll JR; Rigouts L; Prodinger WM; Gori A; Al-Hajoj SA; Allix C; Aristimuño L; Arora J; Baumanis V; Binder L; Cafrune P; Cataldi A; Cheong S; Diel R; Ellermeier C; Evans JT; Fauville-Dufaux M; Ferdinand S; Garcia de Viedma D; Garzelli C; Gazzola L; Gomes HM; Guttierez MC; Hawkey PM; van Helden PD; Kadival GV; Kreiswirth BN; Kremer K; Kubin M; Kulkarni SP; Liens B; Lillebaek T; Ho ML; Martin C; Martin C; Mokrousov I; Narvskaïa O; Ngeow YF; Naumann L; Niemann S; Parwati I; Rahim Z; Rasolofo-Razanamparany V; Rasolonavalona T; Rossetti ML; Rüsch-Gerdes S; Sajduda A; Samper S; Shemyakin IG; Singh UB; Somoskovi A; Skuce RA; van Soolingen D; Streicher EM; Suffys PN; Tortoli E; Tracevska T; Vincent V; Victor TC; Warren RM; Yap SF; Zaman K; Portaels F; Rastogi N; Sola C
    BMC Microbiol; 2006 Mar; 6():23. PubMed ID: 16519816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spacer-Based Macroarrays for CRISPR Genotyping.
    Mokrousov I; Rastogi N
    Methods Mol Biol; 2015; 1311():111-31. PubMed ID: 25981469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: providing guidelines for Quality Assurance when working on membranes.
    Abadia E; Zhang J; Ritacco V; Kremer K; Ruimy R; Rigouts L; Gomes HM; Elias AR; Fauville-Dufaux M; Stoffels K; Rasolofo-Razanamparany V; Garcia de Viedma D; Herranz M; Al-Hajoj S; Rastogi N; Garzelli C; Tortoli E; Suffys PN; van Soolingen D; Refrégier G; Sola C
    BMC Infect Dis; 2011 Apr; 11():110. PubMed ID: 21527037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPRs: molecular signatures used for pathogen subtyping.
    Shariat N; Dudley EG
    Appl Environ Microbiol; 2014 Jan; 80(2):430-9. PubMed ID: 24162568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The significance of spoligotyping method in epidemiological investigations of tuberculosis].
    Augustynowicz-Kopeć E; Jagielski T; Kozińska M; Zabost A; Zwolska Z
    Pneumonol Alergol Pol; 2007; 75(1):22-31. PubMed ID: 17541909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New clustered regularly interspaced short palindromic repeat locus spacer pair typing method based on the newly incorporated spacer for Salmonella enterica.
    Li H; Li P; Xie J; Yi S; Yang C; Wang J; Sun J; Liu N; Wang X; Wu Z; Wang L; Hao R; Wang Y; Jia L; Li K; Qiu S; Song H
    J Clin Microbiol; 2014 Aug; 52(8):2955-62. PubMed ID: 24899040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic diversity of Mycobacterium tuberculosis in Sicily based on spoligotyping and variable number of tandem DNA repeats and comparison with a spoligotyping database for population-based analysis.
    Sola C; Ferdinand S; Mammina C; Nastasi A; Rastogi N
    J Clin Microbiol; 2001 Apr; 39(4):1559-65. PubMed ID: 11283087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacing reverse line blot hybridization spoligotyping of the Mycobacterium tuberculosis complex.
    Honisch C; Mosko M; Arnold C; Gharbia SE; Diel R; Niemann S
    J Clin Microbiol; 2010 May; 48(5):1520-6. PubMed ID: 20200291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of CRISPR arrays in Salmonella Typhimurium 14028 associated with foreign DNA decay.
    Kim JN
    Genes Genomics; 2018 Aug; 40(8):865-872. PubMed ID: 30047111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivities and specificities of spoligotyping and mycobacterial interspersed repetitive unit-variable-number tandem repeat typing methods for studying molecular epidemiology of tuberculosis.
    Scott AN; Menzies D; Tannenbaum TN; Thibert L; Kozak R; Joseph L; Schwartzman K; Behr MA
    J Clin Microbiol; 2005 Jan; 43(1):89-94. PubMed ID: 15634955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spoligotyping of Mycobacterium tuberculosis Complex Isolates by Use of Ligation-Based Amplification and Melting Curve Analysis.
    Zeng X; Li H; Zheng R; Kurepina N; Kreiswirth BN; Zhao X; Xu Y; Li Q
    J Clin Microbiol; 2016 Sep; 54(9):2384-7. PubMed ID: 27335152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States.
    Cowan LS; Diem L; Monson T; Wand P; Temporado D; Oemig TV; Crawford JT
    J Clin Microbiol; 2005 Feb; 43(2):688-95. PubMed ID: 15695665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Recent developments of spoligotyping as applied to the study of epidemiology, biodiversity and molecular phylogeny of the Mycobacterium tuberculosis complex].
    Sola C; Filliol I; Legrand E; Rastogi N
    Pathol Biol (Paris); 2000 Dec; 48(10):921-32. PubMed ID: 11204924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid spoligotyping of Mycobacterium tuberculosis complex bacteria by use of a microarray system with automatic data processing and assignment.
    Ruettger A; Nieter J; Skrypnyk A; Engelmann I; Ziegler A; Moser I; Monecke S; Ehricht R; Sachse K
    J Clin Microbiol; 2012 Jul; 50(7):2492-5. PubMed ID: 22553239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.