BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25981474)

  • 1. Expression and Purification of the CMR (Type III-B) Complex in Sulfolobus solfataricus.
    Zhang J; White MF
    Methods Mol Biol; 2015; 1311():185-94. PubMed ID: 25981474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Expression and characterization of chaperonin from Sulfolobus solfataricus P2].
    Chu X; Wang L; He Y; Dong Z
    Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1324-9. PubMed ID: 19160812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.
    Zhang J; White MF
    Biochem Soc Trans; 2013 Dec; 41(6):1422-6. PubMed ID: 24256231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous gene expression in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Angelov A; Liebl W
    Methods Mol Biol; 2010; 668():109-16. PubMed ID: 20830559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Albers SV; Jonuscheit M; Dinkelaker S; Urich T; Kletzin A; Tampé R; Driessen AJ; Schleper C
    Appl Environ Microbiol; 2006 Jan; 72(1):102-11. PubMed ID: 16391031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA.
    Han D; Lehmann K; Krauss G
    FEBS Lett; 2009 Jun; 583(12):1928-32. PubMed ID: 19427858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity.
    Zhang J; Rouillon C; Kerou M; Reeks J; Brugger K; Graham S; Reimann J; Cannone G; Liu H; Albers SV; Naismith JH; Spagnolo L; White MF
    Mol Cell; 2012 Feb; 45(3):303-13. PubMed ID: 22227115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression, reconstitution, and structure of an archaeal RNA degrading exosome.
    Lorentzen E; Conti E
    Methods Enzymol; 2008; 447():417-35. PubMed ID: 19161854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the CRISPR interference complex CSM reveals key similarities with cascade.
    Rouillon C; Zhou M; Zhang J; Politis A; Beilsten-Edmands V; Cannone G; Graham S; Robinson CV; Spagnolo L; White MF
    Mol Cell; 2013 Oct; 52(1):124-34. PubMed ID: 24119402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel thermostable arylesterase from the archaeon Sulfolobus solfataricus P1: purification, characterization, and expression.
    Park YJ; Yoon SJ; Lee HB
    J Bacteriol; 2008 Dec; 190(24):8086-95. PubMed ID: 18931117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2.
    Han D; Krauss G
    FEBS Lett; 2009 Feb; 583(4):771-6. PubMed ID: 19174159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and crystallization of heterotrimeric translation initiation factor 2 from Sulfolobus solfataricus.
    Stolboushkina EA; Nikonov OS; Garber MB
    Biochemistry (Mosc); 2009 Jan; 74(1):54-60. PubMed ID: 19232049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region.
    Peeters E; Thia-Toong TL; Gigot D; Maes D; Charlier D
    Mol Microbiol; 2004 Oct; 54(2):321-36. PubMed ID: 15469506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The archaeal eIF2 homologue: functional properties of an ancient translation initiation factor.
    Pedullà N; Palermo R; Hasenöhrl D; Bläsi U; Cammarano P; Londei P
    Nucleic Acids Res; 2005; 33(6):1804-12. PubMed ID: 15788752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2.
    Chae JC; Kim E; Bini E; Zylstra GJ
    Biochem Biophys Res Commun; 2007 Jun; 357(3):815-9. PubMed ID: 17451650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus.
    Szabó Z; Sani M; Groeneveld M; Zolghadr B; Schelert J; Albers SV; Blum P; Boekema EJ; Driessen AJ
    J Bacteriol; 2007 Jun; 189(11):4305-9. PubMed ID: 17416662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus.
    Aucelli T; Contursi P; Girfoglio M; Rossi M; Cannio R
    Nucleic Acids Res; 2006; 34(17):e114. PubMed ID: 16971457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner.
    Richards JD; Cubeddu L; Roberts J; Liu H; White MF
    J Mol Biol; 2008 Feb; 376(3):634-44. PubMed ID: 18177890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression, purification, crystallization and data collection of Sulfolobus solfataricus Sso6206, a novel highly conserved protein.
    McEwan AR; Liu H; Oke M; Carter L; Powers H; Dorward M; McMahon SA; White MF; Naismith JH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Mar; 62(Pt 3):228-30. PubMed ID: 16511308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.