These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 25981484)

  • 1. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9.
    Gratz SJ; Harrison MM; Wildonger J; O'Connor-Giles KM
    Methods Mol Biol; 2015; 1311():335-48. PubMed ID: 25981484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases.
    Hwang WY; Fu Y; Reyon D; Gonzales AP; Joung JK; Yeh JR
    Methods Mol Biol; 2015; 1311():317-34. PubMed ID: 25981483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease.
    Gratz SJ; Cummings AM; Nguyen JN; Hamm DC; Donohue LK; Harrison MM; Wildonger J; O'Connor-Giles KM
    Genetics; 2013 Aug; 194(4):1029-35. PubMed ID: 23709638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
    Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y
    Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR: gene editing is just the beginning.
    Ledford H
    Nature; 2016 Mar; 531(7593):156-9. PubMed ID: 26961639
    [No Abstract]   [Full Text] [Related]  

  • 7. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand.
    Gratz SJ; Wildonger J; Harrison MM; O'Connor-Giles KM
    Fly (Austin); 2013; 7(4):249-55. PubMed ID: 24088745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
    Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM
    Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria.
    Grenier F; Lucier JF; Rodrigue S
    Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted genome modifications in soybean with CRISPR/Cas9.
    Jacobs TB; LaFayette PR; Schmitz RJ; Parrott WA
    BMC Biotechnol; 2015 Mar; 15():16. PubMed ID: 25879861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods.
    Jo YI; Suresh B; Kim H; Ramakrishna S
    Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.
    Adame V; Chapapas H; Cisneros M; Deaton C; Deichmann S; Gadek C; Lovato TL; Chechenova MB; Guerin P; Cripps RM
    Biochem Mol Biol Educ; 2016 May; 44(3):263-75. PubMed ID: 27009801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
    Cen Y; Timmermans B; Souffriau B; Thevelein JM; Van Dijck P
    Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
    Mojica FJM; Montoliu L
    Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.
    Nuñez JK; Harrington LB; Doudna JA
    ACS Chem Biol; 2016 Mar; 11(3):681-8. PubMed ID: 26857072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo.
    Salsman J; Masson JY; Orthwein A; Dellaire G
    Curr Gene Ther; 2017; 17(4):263-274. PubMed ID: 29173169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.