These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25981549)

  • 1. Generation of aroE overexpression mutant of Bacillus megaterium for the production of shikimic acid.
    Ghosh S; Banerjee UC
    Microb Cell Fact; 2015 May; 14():69. PubMed ID: 25981549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the production of shikimic acid using the aroK knockout strain of Bacillus megaterium.
    Ghosh S; Mohan U; Banerjee UC
    World J Microbiol Biotechnol; 2016 Aug; 32(8):127. PubMed ID: 27339308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
    Kubota T; Tanaka Y; Hiraga K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8139-49. PubMed ID: 23306642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A natural isolate producing shikimic acid: isolation, identification, and culture condition optimization.
    Rawat G; Tripathi P; Jahan F; Saxena RK
    Appl Biochem Biotechnol; 2013 Apr; 169(8):2290-302. PubMed ID: 23443722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding horizons of shikimic acid. Recent progresses in production and its endless frontiers in application and market trends.
    Rawat G; Tripathi P; Saxena RK
    Appl Microbiol Biotechnol; 2013 May; 97(10):4277-87. PubMed ID: 23553030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of shikimic acid.
    Ghosh S; Chisti Y; Banerjee UC
    Biotechnol Adv; 2012; 30(6):1425-31. PubMed ID: 22445787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1.6 angstroms structure of an NAD+-dependent quinate dehydrogenase from Corynebacterium glutamicum.
    Schoepe J; Niefind K; Schomburg D
    Acta Crystallogr D Biol Crystallogr; 2008 Jul; D64(Pt 7):803-9. PubMed ID: 18566515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical analyses of shikimate dehydrogenase AroE from Aquifex aeolicus: implications for the catalytic mechanism.
    Gan J; Wu Y; Prabakaran P; Gu Y; Li Y; Andrykovitch M; Liu H; Gong Y; Yan H; Ji X
    Biochemistry; 2007 Aug; 46(33):9513-22. PubMed ID: 17649975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mechanistic analysis of a novel class of shikimate dehydrogenases: evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family.
    Peek J; Lee J; Hu S; Senisterra G; Christendat D
    Biochemistry; 2011 Oct; 50(40):8616-27. PubMed ID: 21846128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics.
    Geng H; Liu H; Liu J; Wang C; Wen J
    World J Microbiol Biotechnol; 2017 Jun; 33(6):101. PubMed ID: 28466297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interactive study of influential parameters for shikimic acid production using statistical approach, scale up and its inhibitory action on different lipases.
    Rawat G; Tripathi P; Yadav S; Saxena RK
    Bioresour Technol; 2013 Sep; 144():675-9. PubMed ID: 23871288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route.
    Tripathi P; Rawat G; Yadav S; Saxena RK
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1665-73. PubMed ID: 23543261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, purification and properties of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Zhang X; Zhang S; Hao F; Lai X; Yu H; Huang Y; Wang H
    J Biochem Mol Biol; 2005 Sep; 38(5):624-31. PubMed ID: 16202245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli.
    Díaz-Quiroz DC; Cardona-Félix CS; Viveros-Ceballos JL; Reyes-González MA; Bolívar F; Ordoñez M; Escalante A
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):397-404. PubMed ID: 29363372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework.
    Peek J; Christendat D
    Arch Biochem Biophys; 2015 Jan; 566():85-99. PubMed ID: 25524738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Improvements of shikimic acid production in Escherichia coli with ideal metabolic modification in biosynthetic pathway--a review].
    Xiao M; Zhang L; Shi G
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):5-13. PubMed ID: 24783849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of shikimic acid with shikimate kinase.
    Pereira JH; de Oliveira JS; Canduri F; Dias MV; Palma MS; Basso LA; de Azevedo WF; Santos DS
    Biochem Biophys Res Commun; 2004 Dec; 325(1):10-7. PubMed ID: 15522194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (-)-shikimic acid.
    Nie LD; Shi XX; Ko KH; Lu WD
    J Org Chem; 2009 May; 74(10):3970-3. PubMed ID: 19366236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct capture of product from fermentation broth using a cell-repelling ion exchanger.
    Dainiak MB; Galaev IY; Mattiasson B
    J Chromatogr A; 2002 Jan; 942(1-2):123-31. PubMed ID: 11822378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.