These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 25981907)
1. UV-A and UV-C light induced hydrophilization of dental implants. Al Qahtani MS; Wu Y; Spintzyk S; Krieg P; Killinger A; Schweizer E; Stephan I; Scheideler L; Geis-Gerstorfer J; Rupp F Dent Mater; 2015 Aug; 31(8):e157-67. PubMed ID: 25981907 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications. Rupp F; Haupt M; Klostermann H; Kim HS; Eichler M; Peetsch A; Scheideler L; Doering C; Oehr C; Wendel HP; Sinn S; Decker E; von Ohle C; Geis-Gerstorfer J Acta Biomater; 2010 Dec; 6(12):4566-77. PubMed ID: 20601247 [TBL] [Abstract][Full Text] [Related]
3. Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials. Tuna T; Wein M; Swain M; Fischer J; Att W Dent Mater; 2015 Feb; 31(2):e14-24. PubMed ID: 25467951 [TBL] [Abstract][Full Text] [Related]
4. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. Al-Radha AS; Dymock D; Younes C; O'Sullivan D J Dent; 2012 Feb; 40(2):146-53. PubMed ID: 22182466 [TBL] [Abstract][Full Text] [Related]
5. Influence of Surface Contaminants and Hydrocarbon Pellicle on the Results of Wettability Measurements of Titanium. Kido D; Komatsu K; Suzumura T; Matsuura T; Cheng J; Kim J; Park W; Ogawa T Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834133 [TBL] [Abstract][Full Text] [Related]
6. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Henningsen A; Smeets R; Heuberger R; Jung OT; Hanken H; Heiland M; Cacaci C; Precht C Eur J Oral Sci; 2018 Apr; 126(2):126-134. PubMed ID: 29336070 [TBL] [Abstract][Full Text] [Related]
7. The effect of ultraviolet-C irradiation via a bactericidal ultraviolet sterilizer on an anodized titanium implant: a study in rabbits. Park KH; Koak JY; Kim SK; Han CH; Heo SJ Int J Oral Maxillofac Implants; 2013; 28(1):57-66. PubMed ID: 23377048 [TBL] [Abstract][Full Text] [Related]
8. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study. Canullo L; Genova T; Tallarico M; Gautier G; Mussano F; Botticelli D J Dent Res; 2016 May; 95(5):566-73. PubMed ID: 26848069 [TBL] [Abstract][Full Text] [Related]
9. Wetting behavior of dental implants. Rupp F; Scheideler L; Eichler M; Geis-Gerstorfer J Int J Oral Maxillofac Implants; 2011; 26(6):1256-66. PubMed ID: 22167431 [TBL] [Abstract][Full Text] [Related]
10. Cytocompatibility of Titanium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma. Guo L; Smeets R; Kluwe L; Hartjen P; Barbeck M; Cacaci C; Gosau M; Henningsen A Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717459 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Gahlert M; Gudehus T; Eichhorn S; Steinhauser E; Kniha H; Erhardt W Clin Oral Implants Res; 2007 Oct; 18(5):662-8. PubMed ID: 17608736 [TBL] [Abstract][Full Text] [Related]
12. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. D'Ercole S; Cellini L; Pilato S; Di Lodovico S; Iezzi G; Piattelli A; Petrini M J Mater Sci Mater Med; 2020 Sep; 31(10):84. PubMed ID: 32989624 [TBL] [Abstract][Full Text] [Related]
13. Effect of ultraviolet photoactivation of titanium on osseointegration in a rat model. Ueno T; Yamada M; Hori N; Suzuki T; Ogawa T Int J Oral Maxillofac Implants; 2010; 25(2):287-94. PubMed ID: 20369086 [TBL] [Abstract][Full Text] [Related]
14. Can PEEK Be an Implant Material? Evaluation of Surface Topography and Wettability of Filled Versus Unfilled PEEK With Different Surface Roughness. Elawadly T; Radi IAW; El Khadem A; Osman RB J Oral Implantol; 2017 Dec; 43(6):456-461. PubMed ID: 29064768 [TBL] [Abstract][Full Text] [Related]
15. In vitro degradation of a biodegradable polylactic acid/magnesium composite as potential bone augmentation material in the presence of titanium and PEEK dental implants. Zimmermann T; Ferrandez-Montero A; Lieblich M; Ferrari B; González-Carrasco JL; Müller WD; Schwitalla AD Dent Mater; 2018 Oct; 34(10):1492-1500. PubMed ID: 29941350 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Roughness, Wettability, and SEM Features between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants. Chhabra K; Rajasekar A J Long Term Eff Med Implants; 2024; 34(4):57-63. PubMed ID: 38842233 [TBL] [Abstract][Full Text] [Related]
17. In vitro study of surface alterations to polyetheretherketone and titanium and their effect upon human gingival fibroblasts. Gheisarifar M; Thompson GA; Drago C; Tabatabaei F; Rasoulianboroujeni M J Prosthet Dent; 2021 Jan; 125(1):155-164. PubMed ID: 32081352 [TBL] [Abstract][Full Text] [Related]
18. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible. Wei N; Bin S; Jing Z; Wei S; Yingqiong Z Am J Dent; 2014 Jun; 27(3):171-6. PubMed ID: 25208367 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical and histomorphometric properties of four different mini-implant surfaces. Yadav S; Upadhyay M; Roberts WE Eur J Orthod; 2015 Dec; 37(6):627-35. PubMed ID: 25681126 [TBL] [Abstract][Full Text] [Related]
20. UV Light-Generated Superhydrophilicity of a Titanium Surface Enhances the Transfer, Diffusion and Adsorption of Osteogenic Factors from a Collagen Sponge. Tabuchi M; Hamajima K; Tanaka M; Sekiya T; Hirota M; Ogawa T Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]