These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 25981953)
1. The Neuroprotective Effect of Tetramethylpyrazine Against Contusive Spinal Cord Injury by Activating PGC-1α in Rats. Hu J; Lang Y; Cao Y; Zhang T; Lu H Neurochem Res; 2015 Jul; 40(7):1393-401. PubMed ID: 25981953 [TBL] [Abstract][Full Text] [Related]
2. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Hu J; Lang Y; Zhang T; Ni S; Lu H Neuroscience; 2016 Jul; 328():40-9. PubMed ID: 27132229 [TBL] [Abstract][Full Text] [Related]
3. Tetramethylpyrazine enhances functional recovery after contusion spinal cord injury by modulation of MicroRNA-21, FasL, PDCD4 and PTEN expression. Huang JH; Cao Y; Zeng L; Wang G; Cao M; Lu HB; Hu JZ Brain Res; 2016 Oct; 1648(Pt A):35-45. PubMed ID: 27431939 [TBL] [Abstract][Full Text] [Related]
4. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway. Wang C; Wang P; Zeng W; Li W Bioorg Med Chem Lett; 2016 Feb; 26(4):1287-91. PubMed ID: 26786697 [TBL] [Abstract][Full Text] [Related]
5. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Fan Y; Wu Y Biomed Pharmacother; 2017 Oct; 94():827-833. PubMed ID: 28802236 [TBL] [Abstract][Full Text] [Related]
6. Tetramethylpyrazine Facilitates Functional Recovery after Spinal Cord Injury by Inhibiting MMP2, MMP9, and Vascular Endothelial Cell Apoptosis. Hu JZ; Wang XK; Cao Y; Li DZ; Wu TD; Zhang T; Xu DQ; Lu HB Curr Neurovasc Res; 2017; 14(2):110-116. PubMed ID: 28294065 [TBL] [Abstract][Full Text] [Related]
7. Neuroprotective effects of tetramethylpyrazine on spinal cord injury-Related neuroinflammation mediated by P2X7R/NLRP3 interaction. Fan X; Zang C; Lao K; Mu XH; Dai S Eur J Pharmacol; 2024 Feb; 964():176267. PubMed ID: 38072038 [TBL] [Abstract][Full Text] [Related]
8. Micro-CT as a Tool to Investigate the Efficacy of Tetramethylpyrazine in a Rat Spinal Cord Injury Model. Hu J; Cao Y; Wu T; Li D; Lu H Spine (Phila Pa 1976); 2016 Aug; 41(16):1272-1278. PubMed ID: 26953664 [TBL] [Abstract][Full Text] [Related]
9. Hyperbaric oxygen intervention on expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in spinal cord injury models in rats. Zhou Y; Liu XH; Qu SD; Yang J; Wang ZW; Gao CJ; Su QJ Chin Med J (Engl); 2013 Oct; 126(20):3897-903. PubMed ID: 24157153 [TBL] [Abstract][Full Text] [Related]
10. [Neuroprotective effects of recombinant adeno-associated virus expressing vascular endothelial growth factor on rat traumatic spinal cord injury and its mechanism]. Qiang H; Zhang C; Shi Z; Ling M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jun; 26(6):724-30. PubMed ID: 22792773 [TBL] [Abstract][Full Text] [Related]
11. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901 [TBL] [Abstract][Full Text] [Related]
12. [Effect of curcumin on calcitionin gene related peptide expression after spinal cord injury in rats]. Sun D; Xu J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Oct; 27(10):1225-9. PubMed ID: 24397136 [TBL] [Abstract][Full Text] [Related]
13. Tetramethylpyrazine protects spinal cord and reduces inflammation in a rat model of spinal cord ischemia-reperfusion injury. Fan L; Wang K; Shi Z; Die J; Wang C; Dang X J Vasc Surg; 2011 Jul; 54(1):192-200. PubMed ID: 21458204 [TBL] [Abstract][Full Text] [Related]
14. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats. Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712 [TBL] [Abstract][Full Text] [Related]
15. Lipopolysaccharide preconditioning attenuates neuroapoptosis and improves functional recovery through activation of Nrf2 in traumatic spinal cord injury rats. Li WC; Jiang DM; Hu N; Qi XT; Qiao B; Luo XJ Int J Neurosci; 2013 Apr; 123(4):240-7. PubMed ID: 23215850 [TBL] [Abstract][Full Text] [Related]
16. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Liu C; Shi Z; Fan L; Zhang C; Wang K; Wang B Brain Res; 2011 Feb; 1374():100-9. PubMed ID: 21111721 [TBL] [Abstract][Full Text] [Related]
17. The effect of estrogen-related receptor α on the regulation of angiogenesis after spinal cord injury. Hu JZ; Long H; Wu TD; Zhou Y; Lu HB Neuroscience; 2015 Apr; 290():570-80. PubMed ID: 25665753 [TBL] [Abstract][Full Text] [Related]
18. Systemic administration of 17beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats. Yune TY; Kim SJ; Lee SM; Lee YK; Oh YJ; Kim YC; Markelonis GJ; Oh TH J Neurotrauma; 2004 Mar; 21(3):293-306. PubMed ID: 15115604 [TBL] [Abstract][Full Text] [Related]
19. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. Rao S; Lin Y; Du Y; He L; Huang G; Chen B; Chen T J Mater Chem B; 2019 Apr; 7(16):2648-2656. PubMed ID: 32254998 [TBL] [Abstract][Full Text] [Related]
20. Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Teh DBL; Chua SM; Prasad A; Kakkos I; Jiang W; Yue M; Liu X; All AH Spine J; 2018 Mar; 18(3):507-514. PubMed ID: 29074466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]