BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

941 related articles for article (PubMed ID: 25981963)

  • 1. The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
    Joshi Y; Sória MG; Quadrato G; Inak G; Zhou L; Hervera A; Rathore KI; Elnaggar M; Cucchiarini M; Marine JC; Puttagunta R; Di Giovanni S
    Brain; 2015 Jul; 138(Pt 7):1843-62. PubMed ID: 25981963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development.
    Xiong S; Van Pelt CS; Elizondo-Fraire AC; Liu G; Lozano G
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3226-31. PubMed ID: 16492743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development.
    Zhang Q; He X; Chen L; Zhang C; Gao X; Yang Z; Liu G
    J Pathol; 2012 Nov; 228(3):416-28. PubMed ID: 22821713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury.
    Alhajlah S; Thompson AM; Ahmed Z
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury.
    Duffy P; Wang X; Siegel CS; Tu N; Henkemeyer M; Cafferty WB; Strittmatter SM
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):5063-8. PubMed ID: 22411787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development.
    Terzian T; Wang Y; Van Pelt CS; Box NF; Travis EL; Lozano G
    Mol Cell Biol; 2007 Aug; 27(15):5479-85. PubMed ID: 17526734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo.
    Francoz S; Froment P; Bogaerts S; De Clercq S; Maetens M; Doumont G; Bellefroid E; Marine JC
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3232-7. PubMed ID: 16492744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.
    Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Long ZY; Wu YM
    Mol Neurobiol; 2015 Dec; 52(3):1821-1834. PubMed ID: 25394381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network.
    Toledo F; Krummel KA; Lee CJ; Liu CW; Rodewald LW; Tang M; Wahl GM
    Cancer Cell; 2006 Apr; 9(4):273-85. PubMed ID: 16616333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability.
    Pant V; Xiong S; Iwakuma T; Quintás-Cardama A; Lozano G
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11995-2000. PubMed ID: 21730132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS.
    Hirokawa T; Zou Y; Kurihara Y; Jiang Z; Sakakibara Y; Ito H; Funakoshi K; Kawahara N; Goshima Y; Strittmatter SM; Takei K
    Sci Rep; 2017 Sep; 7(1):12119. PubMed ID: 28935984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lost in the jungle: new hurdles for optic nerve axon regeneration.
    Pernet V; Schwab ME
    Trends Neurosci; 2014 Jul; 37(7):381-7. PubMed ID: 24874558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery.
    Wang Z; Reynolds A; Kirry A; Nienhaus C; Blackmore MG
    J Neurosci; 2015 Feb; 35(7):3139-45. PubMed ID: 25698749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models of Mdm2 and Mdm4 and their clinical implications.
    Xiong S
    Chin J Cancer; 2013 Jul; 32(7):371-5. PubMed ID: 23327795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury.
    Wang X; Sekine Y; Byrne AB; Cafferty WB; Hammarlund M; Strittmatter SM
    eNeuro; 2016; 3(6):. PubMed ID: 28032120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse.
    Patel AK; Park KK; Hackam AS
    Neuroscience; 2017 Feb; 343():372-383. PubMed ID: 28011153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve.
    Pernet V; Joly S; Dalkara D; Jordi N; Schwarz O; Christ F; Schaffer DV; Flannery JG; Schwab ME
    Neurobiol Dis; 2013 Mar; 51():202-13. PubMed ID: 23194670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration.
    Sekine Y; Lin-Moore A; Chenette DM; Wang X; Jiang Z; Cafferty WB; Hammarlund M; Strittmatter SM
    Cell Rep; 2018 Apr; 23(2):415-428. PubMed ID: 29642001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice.
    Geoffroy CG; Lorenzana AO; Kwan JP; Lin K; Ghassemi O; Ma A; Xu N; Creger D; Liu K; He Z; Zheng B
    J Neurosci; 2015 Apr; 35(16):6413-28. PubMed ID: 25904793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.