These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 25982132)
1. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour). Mocoeur A; Zhang YM; Liu ZQ; Shen X; Zhang LM; Rasmussen SK; Jing HC Theor Appl Genet; 2015 Sep; 128(9):1685-701. PubMed ID: 25982132 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716 [TBL] [Abstract][Full Text] [Related]
3. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Shiringani AL; Frisch M; Friedt W Theor Appl Genet; 2010 Jul; 121(2):323-36. PubMed ID: 20229249 [TBL] [Abstract][Full Text] [Related]
5. Construction of a high-density genetic linkage map and QTL mapping for bioenergy-related traits in sweet sorghum [ Guden B; Yol E; Erdurmus C; Lucas SJ; Uzun B Front Plant Sci; 2023; 14():1081931. PubMed ID: 37342135 [TBL] [Abstract][Full Text] [Related]
6. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop. Ordonio R; Ito Y; Morinaka Y; Sazuka T; Matsuoka M Int Rev Cell Mol Biol; 2016; 321():221-57. PubMed ID: 26811289 [TBL] [Abstract][Full Text] [Related]
7. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum. Vandenbrink JP; Goff V; Jin H; Kong W; Paterson AH; Feltus FA Theor Appl Genet; 2013 Sep; 126(9):2367-80. PubMed ID: 23836384 [TBL] [Abstract][Full Text] [Related]
8. Association mapping of height and maturity across five environments using the sorghum mini core collection. Upadhyaya HD; Wang YH; Sharma S; Singh S Genome; 2012 Jun; 55(6):471-9. PubMed ID: 22680231 [TBL] [Abstract][Full Text] [Related]
9. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Yang L; Zhou Q; Sheng X; Chen X; Hua Y; Lin S; Luo Q; Yu B; Shao T; Wu Y; Chang J; Li Y; Tu M Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833996 [TBL] [Abstract][Full Text] [Related]
10. Quantitative trait loci mapping of stem sugar content and stem diameter in sorghum recombinant inbred lines using genotyping-by-sequencing. Takele A; Feyissa T; Disasa T Mol Biol Rep; 2022 Apr; 49(4):3045-3054. PubMed ID: 35076849 [TBL] [Abstract][Full Text] [Related]
11. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680 [TBL] [Abstract][Full Text] [Related]
12. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels. van der Weijde T; Kamei CLA; Severing EI; Torres AF; Gomez LD; Dolstra O; Maliepaard CA; McQueen-Mason SJ; Visser RGF; Trindade LM BMC Genomics; 2017 May; 18(1):406. PubMed ID: 28545405 [TBL] [Abstract][Full Text] [Related]
13. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Shiringani AL; Friedt W Theor Appl Genet; 2011 Oct; 123(6):999-1011. PubMed ID: 21739141 [TBL] [Abstract][Full Text] [Related]
14. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Kajiya-Kanegae H; Takanashi H; Fujimoto M; Ishimori M; Ohnishi N; Wacera W F; Omollo EA; Kobayashi M; Yano K; Nakano M; Kozuka T; Kusaba M; Iwata H; Tsutsumi N; Sakamoto W Plant Cell Physiol; 2020 Jul; 61(7):1262-1272. PubMed ID: 32353144 [TBL] [Abstract][Full Text] [Related]
15. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops. Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898 [TBL] [Abstract][Full Text] [Related]
16. Genomic Selection for Optimum Index with Dry Biomass Yield, Dry Mass Fraction of Fresh Material, and Plant Height in Biomass Sorghum. Habyarimana E; Lopez-Cruz M; Baloch FS Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31948110 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production. da Silva MJ; Pastina MM; de Souza VF; Schaffert RE; Carneiro PCS; Noda RW; Carneiro JES; Damasceno CMB; Parrella RADC PLoS One; 2017; 12(8):e0183504. PubMed ID: 28817696 [TBL] [Abstract][Full Text] [Related]
18. Genetic variation and association of yield, yield components, and carbon storage in sorghum (Sorghum bicolor [L.] Moench) genotypes. Ngidi A; Shimelis H; Abady S; Chaplot V; Figlan S BMC Genom Data; 2024 Aug; 25(1):74. PubMed ID: 39090581 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Zheng LY; Guo XS; He B; Sun LJ; Peng Y; Dong SS; Liu TF; Jiang S; Ramachandran S; Liu CM; Jing HC Genome Biol; 2011 Nov; 12(11):R114. PubMed ID: 22104744 [TBL] [Abstract][Full Text] [Related]
20. Water resource potential for large-scale sweet sorghum production as bioenergy feedstock in Northern China. Fu H; Chen Y; Yang X; Di J; Xu M; Zhang B Sci Total Environ; 2019 Feb; 653():758-764. PubMed ID: 30759601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]