These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 25982132)
41. Mapping quantitative trait loci for five forage quality traits in a sorghum-sudangrass hybrid. Li JQ; Wang LH; Zhan QW; Liu YL; Zhang Q; Li JF; Fan FF Genet Mol Res; 2015 Oct; 14(4):13266-73. PubMed ID: 26535640 [TBL] [Abstract][Full Text] [Related]
42. Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Feltus FA; Hart GE; Schertz KF; Casa AM; Kresovich S; Abraham S; Klein PE; Brown PJ; Paterson AH Theor Appl Genet; 2006 May; 112(7):1295-305. PubMed ID: 16491426 [TBL] [Abstract][Full Text] [Related]
43. Genetic analysis of rhizomatousness and its relationship with vegetative branching of recombinant inbred lines of Sorghum bicolor × S. propinquum. Kong W; Kim C; Goff VH; Zhang D; Paterson AH Am J Bot; 2015 May; 102(5):718-24. PubMed ID: 26022486 [TBL] [Abstract][Full Text] [Related]
44. Genetic Analysis of Stem Diameter and Water Contents To Improve Sorghum Bioenergy Efficiency. Kong W; Jin H; Goff VH; Auckland SA; Rainville LK; Paterson AH G3 (Bethesda); 2020 Nov; 10(11):3991-4000. PubMed ID: 32907818 [TBL] [Abstract][Full Text] [Related]
45. Adaptability and stability of genotypes of sweet sorghum by GGEBiplot and Toler methods. de Figueiredo UJ; Nunes JA; da C Parrella RA; Souza ED; da Silva AR; Emygdio BM; Machado JR; Tardin FD Genet Mol Res; 2015 Sep; 14(3):11211-21. PubMed ID: 26400352 [TBL] [Abstract][Full Text] [Related]
46. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306 [TBL] [Abstract][Full Text] [Related]
47. Understanding rice adaptation to varying agro-ecosystems: trait interactions and quantitative trait loci. Dixit S; Grondin A; Lee CR; Henry A; Olds TM; Kumar A BMC Genet; 2015 Aug; 16():86. PubMed ID: 26243626 [TBL] [Abstract][Full Text] [Related]
48. Genetic divergence in northern Benin sorghum (Sorghum bicolor L. Moench) landraces as revealed by agromorphological traits and selection of candidate genotypes. Dossou-Aminon I; Loko LY; Adjatin A; Ewédjè EE; Dansi A; Rakshit S; Cissé N; Patil JV; Agbangla C; Sanni A; Akoègninou A; Akpagana K ScientificWorldJournal; 2015; 2015():916476. PubMed ID: 25729773 [TBL] [Abstract][Full Text] [Related]
49. QTL mapping of forage yield and forage yield component traits in Sorghum bicolor x S. sudanense. Liu YL; Wang LH; Li JQ; Zhan QW; Zhang Q; Li JF; Fan FF Genet Mol Res; 2015 Apr; 14(2):3854-61. PubMed ID: 25966155 [TBL] [Abstract][Full Text] [Related]
51. Inheritance and Identification of a Major Quantitative Trait Locus (QTL) that Confers Resistance to Meloidogyne incognita and a Novel QTL for Plant Height in Sweet Sorghum. Harris-Shultz KR; Davis RF; Knoll JE; Anderson W; Wang H Phytopathology; 2015 Dec; 105(12):1522-8. PubMed ID: 26574655 [TBL] [Abstract][Full Text] [Related]
52. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Mantilla Perez MB; Zhao J; Yin Y; Hu J; Salas Fernandez MG Theor Appl Genet; 2014 Dec; 127(12):2645-62. PubMed ID: 25326721 [TBL] [Abstract][Full Text] [Related]
53. Comparative genetic and QTL mapping in sorghum and maize. Lee M Symp Soc Exp Biol; 1996; 50():31-8. PubMed ID: 9039432 [TBL] [Abstract][Full Text] [Related]
54. Phenotypic plasticity of plant traits contributing to grain and biomass yield of dual-purpose sorghum. Ndiaye M; Muller B; Ganyo KK; Guissé A; Cissé N; Adam M Planta; 2021 Mar; 253(4):82. PubMed ID: 33765199 [TBL] [Abstract][Full Text] [Related]
55. Novel Grain Weight Loci Revealed in a Cross between Cultivated and Wild Sorghum. Tao Y; Mace E; George-Jaeggli B; Hunt C; Cruickshank A; Henzell R; Jordan D Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025022 [TBL] [Abstract][Full Text] [Related]
56. A new high-throughput assay for determining soluble sugar in sorghum internode-extracted juice. Li Y; Mehta R; Messing J Planta; 2018 Oct; 248(4):785-793. PubMed ID: 29948129 [TBL] [Abstract][Full Text] [Related]
57. Research on Genotype Markers for Plant Height and Assisted Breeding of Key Sorghum Resources in China. Wang Y; Lv N; Yin F; Duan G; Niu H; Chu J; Yan H; Ju L; Fan F; Lv X; Ping J Genes (Basel); 2024 Jan; 15(1):. PubMed ID: 38254972 [TBL] [Abstract][Full Text] [Related]
58. Large-scale genome-wide association study reveals that drought-induced lodging in grain sorghum is associated with plant height and traits linked to carbon remobilisation. Wang X; Mace E; Tao Y; Cruickshank A; Hunt C; Hammer G; Jordan D Theor Appl Genet; 2020 Nov; 133(11):3201-3215. PubMed ID: 32833037 [TBL] [Abstract][Full Text] [Related]
59. Genome-Wide Association Study for Biomass Related Traits in a Panel of Habyarimana E; De Franceschi P; Ercisli S; Baloch FS; Dall'Agata M Front Plant Sci; 2020; 11():551305. PubMed ID: 33281836 [TBL] [Abstract][Full Text] [Related]
60. Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Fernandes SB; Dias KOG; Ferreira DF; Brown PJ Theor Appl Genet; 2018 Mar; 131(3):747-755. PubMed ID: 29218378 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]