These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 25982203)
1. Dynamic changes of DNA epigenetic marks in mouse oocytes during natural and accelerated aging. Qian Y; Tu J; Tang NL; Kong GW; Chung JP; Chan WY; Lee TL Int J Biochem Cell Biol; 2015 Oct; 67():121-7. PubMed ID: 25982203 [TBL] [Abstract][Full Text] [Related]
2. MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development. Tu J; Liao J; Luk AC; Tang NL; Chan WY; Lee TL Int J Biochem Cell Biol; 2015 Oct; 67():115-20. PubMed ID: 25979370 [TBL] [Abstract][Full Text] [Related]
3. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Raiber EA; Beraldi D; Ficz G; Burgess HE; Branco MR; Murat P; Oxley D; Booth MJ; Reik W; Balasubramanian S Genome Biol; 2012 Aug; 13(8):R69. PubMed ID: 22902005 [TBL] [Abstract][Full Text] [Related]
5. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Onodera A; González-Avalos E; Lio CJ; Georges RO; Bellacosa A; Nakayama T; Rao A Genome Biol; 2021 Jun; 22(1):186. PubMed ID: 34158086 [TBL] [Abstract][Full Text] [Related]
6. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Weber AR; Krawczyk C; Robertson AB; Kuśnierczyk A; Vågbø CB; Schuermann D; Klungland A; Schär P Nat Commun; 2016 Mar; 7():10806. PubMed ID: 26932196 [TBL] [Abstract][Full Text] [Related]
7. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of genomic 5-hydroxymethylcytosine during mouse oocyte growth. Sakashita A; Kobayashi H; Wakai T; Sotomaru Y; Hata K; Kono T Genes Cells; 2014 Aug; 19(8):629-36. PubMed ID: 24995522 [TBL] [Abstract][Full Text] [Related]
9. Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Zhang P; Huang B; Xu X; Sessa WC Biochem Biophys Res Commun; 2013 Aug; 437(3):368-73. PubMed ID: 23820384 [TBL] [Abstract][Full Text] [Related]
10. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Okashita N; Kumaki Y; Ebi K; Nishi M; Okamoto Y; Nakayama M; Hashimoto S; Nakamura T; Sugasawa K; Kojima N; Takada T; Okano M; Seki Y Development; 2014 Jan; 141(2):269-80. PubMed ID: 24335252 [TBL] [Abstract][Full Text] [Related]
12. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Gu TP; Guo F; Yang H; Wu HP; Xu GF; Liu W; Xie ZG; Shi L; He X; Jin SG; Iqbal K; Shi YG; Deng Z; Szabó PE; Pfeifer GP; Li J; Xu GL Nature; 2011 Sep; 477(7366):606-10. PubMed ID: 21892189 [TBL] [Abstract][Full Text] [Related]
13. Exogenous thymine DNA glycosylase regulates epigenetic modifications and meiotic cell cycle progression of mouse oocytes. Ma JY; Zhao K; OuYang YC; Wang ZB; Luo YB; Hou Y; Schatten H; Shen W; Sun QY Mol Hum Reprod; 2015 Feb; 21(2):186-94. PubMed ID: 25304979 [TBL] [Abstract][Full Text] [Related]
14. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites. DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435 [TBL] [Abstract][Full Text] [Related]
16. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Tan L; Shi YG Development; 2012 Jun; 139(11):1895-902. PubMed ID: 22569552 [TBL] [Abstract][Full Text] [Related]
17. Gadd45a promotes DNA demethylation through TDG. Li Z; Gu TP; Weber AR; Shen JZ; Li BZ; Xie ZG; Yin R; Guo F; Liu X; Tang F; Wang H; Schär P; Xu GL Nucleic Acids Res; 2015 Apr; 43(8):3986-97. PubMed ID: 25845601 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Valentini E; Zampieri M; Malavolta M; Bacalini MG; Calabrese R; Guastafierro T; Reale A; Franceschi C; Hervonen A; Koller B; Bernhardt J; Slagboom PE; Toussaint O; Sikora E; Gonos ES; Breusing N; Grune T; Jansen E; Dollé ME; Moreno-Villanueva M; Sindlinger T; Bürkle A; Ciccarone F; Caiafa P Aging (Albany NY); 2016 Aug; 8(9):1896-1922. PubMed ID: 27587280 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Fu X; Jin L; Wang X; Luo A; Hu J; Zheng X; Tsark WM; Riggs AD; Ku HT; Huang W Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17892-7. PubMed ID: 24114270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]