These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25982442)

  • 1. Foam-like compression behavior of fibrin networks.
    Kim OV; Liang X; Litvinov RI; Weisel JW; Alber MS; Purohit PK
    Biomech Model Mechanobiol; 2016 Feb; 15(1):213-228. PubMed ID: 25982442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture.
    Tutwiler V; Maksudov F; Litvinov RI; Weisel JW; Barsegov V
    Acta Biomater; 2021 Sep; 131():355-369. PubMed ID: 34233219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A constitutive model for the time-dependent, nonlinear stress response of fibrin networks.
    van Kempen TH; Peters GW; van de Vosse FN
    Biomech Model Mechanobiol; 2015 Oct; 14(5):995-1006. PubMed ID: 25618024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression-induced structural and mechanical changes of fibrin-collagen composites.
    Kim OV; Litvinov RI; Chen J; Chen DZ; Weisel JW; Alber MS
    Matrix Biol; 2017 Jul; 60-61():141-156. PubMed ID: 27751946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood.
    Liang X; Chernysh I; Purohit PK; Weisel JW
    Acta Biomater; 2017 Sep; 60():275-290. PubMed ID: 28694237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic behavior and platelet retraction in low- and high-density fibrin gels.
    Wufsus AR; Rana K; Brown A; Dorgan JR; Liberatore MW; Neeves KB
    Biophys J; 2015 Jan; 108(1):173-83. PubMed ID: 25564864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of fibrous gels under compression.
    Sun C; Purohit PK
    Extreme Mech Lett; 2022 Jul; 54():. PubMed ID: 37035476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.
    Scionti G; Moral M; Toledano M; Osorio R; Durán JD; Alaminos M; Campos A; López-López MT
    J Biomed Mater Res A; 2014 Aug; 102(8):2573-82. PubMed ID: 23963645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, mechanical properties, and modeling of cyclically compressed pulmonary emboli.
    Chernysh IN; Spiewak R; Cambor CL; Purohit PK; Weisel JW
    J Mech Behav Biomed Mater; 2020 May; 105():103699. PubMed ID: 32279846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are tensile and compressive Young's moduli of compact bone different?
    Barak MM; Currey JD; Weiner S; Shahar R
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):51-60. PubMed ID: 19627807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive Modeling of the Densification Behavior in Open-Porous Cellular Solids.
    Rege A
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.