BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25982950)

  • 1. Fluorescence Quenching of Perylene DBPI Dye by Colloidal Low-Dimensional Gold Nanoparticles.
    El-Daly SA; Rahman MM; Alamry KA; Asiri AM
    J Fluoresc; 2015 Jul; 25(4):973-8. PubMed ID: 25982950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence quenching N,N-bis(2,6-dimethylphenyl)-3,4:9,10-perylenetetracarboxylic diimide (BDPD) laser dye by colloidal silver nanoparticles.
    El-Daly SA; Salem IA; Hussein MA; Asiri AM
    J Fluoresc; 2015 Mar; 25(2):379-85. PubMed ID: 25656068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence quenching by colloidal heavy metals nanoparticles: implications for correlative fluorescence and electron microscopy studies.
    Kandela IK; Albrecht RM
    Scanning; 2007; 29(4):152-61. PubMed ID: 17477396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quenching of the perylene fluorophore by stable nitroxide radical-containing macromolecules.
    Hughes BK; Braunecker WA; Ferguson AJ; Kemper TW; Larsen RE; Gennett T
    J Phys Chem B; 2014 Oct; 118(43):12541-8. PubMed ID: 25329883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC.
    Raghavendra UP; Basanagouda M; Thipperudrappa J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():350-9. PubMed ID: 26056986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between certain porphyrins and CdS colloids: a steady state and time resolved fluorescence quenching study.
    Jhonsi MA; Kathiravan A; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1507-11. PubMed ID: 18583183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U
    ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching of Luminol Fluorescence at Nano-Bio Interface: Towards the Development of an Efficient Energy Transfer System.
    Sonu VK; Mitra S
    J Fluoresc; 2019 Jan; 29(1):165-176. PubMed ID: 30519975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The comparisons of fluorescence quenching between perylene and pyrene].
    Chen Z; Zhang Z; Yuan X; Zhang G; Bai F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Jun; 21(3):362-5. PubMed ID: 12947669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 9-Piperazine substituted perylene-3,4-dicarboximide as a fluorescent probe in ratiometric analysis.
    Huang L; Tam-Chang SW
    Chem Commun (Camb); 2011 Feb; 47(8):2291-3. PubMed ID: 21152544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process.
    Nebu J; Anjali Devi JS; Aparna RS; Aswathy B; Aswathy AO; Sony G
    Mikrochim Acta; 2018 Nov; 185(12):532. PubMed ID: 30402728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles.
    Wu ZS; Jiang JH; Fu L; Shen GL; Yu RQ
    Anal Biochem; 2006 Jun; 353(1):22-9. PubMed ID: 16626619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-directed syntheses of gold nanohybrid systems with structure-dependent optical features: Selective fluorescence sensing of Fe
    Ungor D; Csapó E; Kismárton B; Juhász Á; Dékány I
    Colloids Surf B Biointerfaces; 2017 Jul; 155():135-141. PubMed ID: 28419942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Gold Nanoparticle-Fluorescent Protein Conjugates as Platforms for Sensing Thiolate Compounds via Modulation of Energy Transfer Quenching.
    Kapur A; Aldeek F; Ji X; Safi M; Wang W; Del Cid A; Steinbock O; Mattoussi H
    Bioconjug Chem; 2017 Feb; 28(2):678-687. PubMed ID: 28052676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe.
    Li J; Li Y; Shahzad SA; Chen J; Chen Y; Wang Y; Yang M; Yu C
    Chem Commun (Camb); 2015 Apr; 51(29):6354-6. PubMed ID: 25763414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching of uranine on confeito-like Au nanoparticles.
    Ujihara M; Dang NM; Imae T
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4906-10. PubMed ID: 24757961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenching and blinking of fluorescence of a single dye molecule bound to gold nanoparticles.
    Cannone F; Chirico G; Bizzarri AR; Cannistraro S
    J Phys Chem B; 2006 Aug; 110(33):16491-8. PubMed ID: 16913781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective quenching of fluorescence from unbound oligonucleotides by gold nanoparticles as a probe of RNA structure.
    Li H; Liang R; Turner DH; Rothberg LJ; Duan S
    RNA; 2007 Nov; 13(11):2034-41. PubMed ID: 17895397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles.
    Sabatini CA; Pereira RV; Gehlen MH
    J Fluoresc; 2007 Jul; 17(4):377-82. PubMed ID: 17549612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.