These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25982987)

  • 1. Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil.
    Lu XM; Lu PZ; Chen JJ; Zhang H; Fu J
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14727-37. PubMed ID: 25982987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes of heavy metals form during aerobic high temperature composting of pig manure and the effects of passivators].
    He ZM; Liu Q; Xie GX; Rong XM; Peng JW; Song HX; Li LF; Su SM
    Ying Yong Sheng Tai Xue Bao; 2010 Oct; 21(10):2659-65. PubMed ID: 21328957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of Cu and Zn during composting of pig manure amended with rock phosphate.
    Lu D; Wang L; Yan B; Ou Y; Guan J; Bian Y; Zhang Y
    Waste Manag; 2014 Aug; 34(8):1529-36. PubMed ID: 24785363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a low-cost and highly efficient passivator synthesized by alkali-fused fly ash and swine manure on the leachability of heavy metals in a multi-metal contaminated soil.
    Wang K; Peng N; Zhao P; Chen M; Deng F; Yu X; Zhang D; Chen J; Sun J
    Chemosphere; 2021 Sep; 279():130558. PubMed ID: 33887596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure.
    Meng J; Wang L; Zhong L; Liu X; Brookes PC; Xu J; Chen H
    Chemosphere; 2017 Aug; 180():93-99. PubMed ID: 28391157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of Ca-bentonite on Cu and Zn Forms in Compost and Soil, and Their Absorption by Chinese Cabbage].
    Zhao JC; Wang Q; Ren XN; Li RH; Mukesh KA; Altaf HL; Zhang ZQ
    Huan Jing Ke Xue; 2018 Apr; 39(4):1926-1933. PubMed ID: 29965020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of Different Passivating Agents on the Stabilization of Heavy Metals in Chicken Manure Compost and Its Maturity Evaluating Indexes].
    Luan RY; Gao S; Xu YM; Ji YN; Yan CX; Sun YB
    Huan Jing Ke Xue; 2020 Jan; 41(1):469-478. PubMed ID: 31854950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting.
    Zhou H; Meng H; Zhao L; Shen Y; Hou Y; Cheng H; Song L
    Bioresour Technol; 2018 Jun; 258():279-286. PubMed ID: 29544101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inorganic additives (rock phosphate, PR and boron waste, BW) on the passivation of Cu, Zn during pig manure composting.
    Wang L; Liu H; Prasher SO; Ou Y; Yan B; Zhong R
    J Environ Manage; 2021 May; 285():112101. PubMed ID: 33609977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of passivators on antibiotic resistance genes and related mechanisms during composting of copper-enriched pig manure.
    Qian X; Gu J; Sun W; Wang X; Li H
    Sci Total Environ; 2019 Jul; 674():383-391. PubMed ID: 31005840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of Stabilizer Addition on Soil Arsenic Speciation and Investigation of Its Mechanism].
    Chen ZL; Zhao SH; Zhong SX; Sang YH; Jiang XL; Dai Y; Wang X
    Huan Jing Ke Xue; 2016 Jun; 37(6):2345-2352. PubMed ID: 29964906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil.
    Tang X; Li X; Liu X; Hashmi MZ; Xu J; Brookes PC
    Chemosphere; 2015 Jan; 119():177-183. PubMed ID: 24992219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure.
    Miaomiao H; Wenhong L; Xinqiang L; Donglei W; Guangming T
    Waste Manag; 2009 Feb; 29(2):590-7. PubMed ID: 18778928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of organic matter transformation in the bioavailability of Cu and Zn during sepiolite-amended pig manure composting.
    Zheng W; Yang Z; Huang L; Chen Y
    J Environ Manage; 2022 Jul; 314():115046. PubMed ID: 35468432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of composting process on the dissipation of extractable sulfonamides in swine manure.
    Liu B; Li Y; Zhang X; Feng C; Gao M; Shen Q
    Bioresour Technol; 2015 Jan; 175():284-90. PubMed ID: 25459834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China.
    Shi J; Yu X; Zhang M; Lu S; Wu W; Wu J; Xu J
    J Environ Qual; 2011; 40(6):1695-704. PubMed ID: 22031551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lime amendment on the organic substances changes, antibiotics removal, and heavy metals speciation transformation during swine manure composting.
    Chen Z; Fu Q; Cao Y; Wen Q; Wu Y
    Chemosphere; 2021 Jan; 262():128342. PubMed ID: 33182112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting.
    Jiang W; Li D; Yang J; Ye Y; Luo J; Zhou X; Yang L; Liu Z
    Environ Res; 2023 Aug; 231(Pt 3):116306. PubMed ID: 37268202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of Alkali Solids Amendment on Sewage Sludge Aerobic Composting and the Potential of Related Products on Infertile Soil Amelioration].
    Cai HZ; Ning XC; Wang Q; Zhang ZQ; Ren XN; Li RH; Wang MJ; Mukesh KA
    Huan Jing Ke Xue; 2016 Dec; 37(12):4848-4856. PubMed ID: 29965328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of typical modified passivators on speciation of heavy metals in protein extracted from sewage sludge.
    Wang W; Zhang J; Li X; Zang Y; Li R
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10875-10886. PubMed ID: 30778942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.