These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The effect of an anti-glucocorticoid (ZK 98299) on thymus evolution and on hydrocortisone-induced thymolysis, intestinal brush-border enzymes and their desialylation in suckling rats. Kraml J; Kolínská J; Kadlecová L; Zákostelecká M; Hirsová D; Schreiber V Adv Exp Med Biol; 1995; 371A():537-41. PubMed ID: 8525984 [TBL] [Abstract][Full Text] [Related]
23. Membrane fluidity and lipid composition of rat small intestinal brush-border membranes during postnatal maturation. Hübner C; Lindner SG; Stern M; Claussen M; Kohlschütter A Biochim Biophys Acta; 1988 Mar; 939(1):145-50. PubMed ID: 3349076 [TBL] [Abstract][Full Text] [Related]
24. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. Bretscher A; Weber K J Cell Biol; 1978 Dec; 79(3):839-45. PubMed ID: 365871 [TBL] [Abstract][Full Text] [Related]
25. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase. Kramer W; Dechent C; Girbig F; Gutjahr U; Neubauer H Biochim Biophys Acta; 1990 Nov; 1030(1):41-9. PubMed ID: 1979919 [TBL] [Abstract][Full Text] [Related]
26. Dietary triacylglycerol modulates sodium-dependent D-glucose transport, fluidity and fatty acid composition of rat small intestinal brush-border membrane. Brasitus TA; Dudeja PK; Bolt MJ; Sitrin MD; Baum C Biochim Biophys Acta; 1989 Feb; 979(2):177-86. PubMed ID: 2923876 [TBL] [Abstract][Full Text] [Related]
27. Lipid-phase structure in epithelial cell membranes: comparison of renal brush border and basolateral membranes. Illsley NP; Lin HY; Verkman AS Biochemistry; 1988 Mar; 27(6):2077-83. PubMed ID: 3378045 [TBL] [Abstract][Full Text] [Related]
28. Pyrene excimer fluorescence in rabbit skeletal alphaalphatropomyosin labeled with N-(1-pyrene)maleimide. A probe of sulfhydryl proximity and local chain separation. Betcher-Lange SL; Lehrer SS J Biol Chem; 1978 Jun; 253(11):3757-60. PubMed ID: 565773 [TBL] [Abstract][Full Text] [Related]
29. Reappraisal of the binding processes of N-(3-pyrene)maleimide as a fluorescent probe of proteins. Lux B; Gérard D J Biol Chem; 1981 Feb; 256(4):1767-71. PubMed ID: 7462222 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of Ca(2+)-induced aggregation of porcine intestinal brush-border membranes by lipid peroxidation. Ohyashiki T; Takino T; Matsui K J Biochem; 1994 Aug; 116(2):351-6. PubMed ID: 7822254 [TBL] [Abstract][Full Text] [Related]
31. Analytical isoelectric focusing of rat intestinal brush-border enzymes: postnatal changes and effect of neuraminidase in vitro. Kraml J; Kolínska J; Kadlecová L; Zákostelecka M; Lojda Z FEBS Lett; 1983 Jan; 151(2):193-6. PubMed ID: 6131837 [No Abstract] [Full Text] [Related]
32. Protein-lipid interactions in human small intestinal brush-border membranes. Dudeja PK; Harig JM; Ramaswamy K; Brasitus TA Am J Physiol; 1989 Nov; 257(5 Pt 1):G809-17. PubMed ID: 2596611 [TBL] [Abstract][Full Text] [Related]
33. Characterization of specific pancreatic polypeptide receptors on basolateral membranes of the canine small intestine. Gilbert WR; Frank BH; Gavin JR; Gingerich RL Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4745-9. PubMed ID: 3387434 [TBL] [Abstract][Full Text] [Related]
34. Examination of the molecular mechanism of SH reagent-induced inhibition of the intestinal brush-border membrane Na+/phosphate cotransporter. Peerce BE; Cedilote M; Clarke RD Biochim Biophys Acta; 1995 Oct; 1239(1):11-21. PubMed ID: 7548138 [TBL] [Abstract][Full Text] [Related]
35. Changes in chemical composition of intestinal brush border membrane in alloxan induced chronic diabetes. Pathak RM; Ansari S; Mahmood A Indian J Exp Biol; 1981 May; 19(5):503-5. PubMed ID: 7275211 [No Abstract] [Full Text] [Related]
36. The relationship of membrane fluidity to calcium flux in chick intestinal brush border membranes. Bikle DD; Whitney J; Munson S Endocrinology; 1984 Jan; 114(1):260-7. PubMed ID: 6546306 [TBL] [Abstract][Full Text] [Related]
37. Vitamin D-mediated intestinal calcium transport. Effects of essential fatty acid deficiency and spin label studies of enterocyte membrane lipid fluidity. Putkey JA; Spielvogel AM; Sauerheber RD; Dunlap CS; Norman AW Biochim Biophys Acta; 1982 May; 688(1):177-90. PubMed ID: 7093274 [TBL] [Abstract][Full Text] [Related]
38. Intestinal absorption of dipeptides and beta-lactam antibiotics. II. Purification of the binding protein for dipeptides and beta-lactam antibiotics from rabbit small intestinal brush border membranes. Kramer W; Gutjahr U; Girbig F; Leipe I Biochim Biophys Acta; 1990 Nov; 1030(1):50-9. PubMed ID: 2265192 [TBL] [Abstract][Full Text] [Related]
39. Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine. Brandis M; Harmeyer J; Kaune R; Mohrmann M; Murer H; Zimolo Z J Physiol; 1987 Mar; 384():479-90. PubMed ID: 2821238 [TBL] [Abstract][Full Text] [Related]
40. Dexamethasone-induced alterations in lipid composition and fluidity of rat proximal-small-intestinal brush-border membranes. Brasitus TA; Dudeja PK; Dahiya R; Halline A Biochem J; 1987 Dec; 248(2):455-61. PubMed ID: 3435460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]