These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2598317)

  • 41. Effect of oxidant exposure on monkey intestinal brush-border membrane.
    Nalini S; Ibrahim SA; Balasubramanian KA
    Biochim Biophys Acta; 1993 Apr; 1147(2):169-76. PubMed ID: 8476910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adherence of Campylobacter jejuni and Campylobacter coli to porcine intestinal brush border membranes.
    Naess V; Johannessen C; Hofstad T
    APMIS; 1988 Aug; 96(8):681-7. PubMed ID: 3046640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-(1-pyrene)maleimide: a fluorescent cross-linking reagent.
    Wu CW; Yarbrough LR
    Biochemistry; 1976 Jun; 15(13):2863-8. PubMed ID: 7290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ATP-driven copper transport across the intestinal brush border membrane.
    Knöpfel M; Smith C; Solioz M
    Biochem Biophys Res Commun; 2005 May; 330(3):645-52. PubMed ID: 15809046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The activation of rabbit intestinal adenylate cyclase by cholera toxin.
    Longbottom D; van Heyningen S
    Biochim Biophys Acta; 1989 Dec; 1014(3):289-97. PubMed ID: 2605257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of substrates with the intestinal brush border membrane Na/phosphate cotransporter.
    Peerce BE
    Biochim Biophys Acta; 1997 Jan; 1323(1):45-56. PubMed ID: 9030211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Order-disorder phase transition and lipid dynamics in rabbit small intestinal brush border membranes. Effect of proteins.
    Mütsch B; Gains N; Hauser H
    Biochemistry; 1983 Dec; 22(26):6326-33. PubMed ID: 6318815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of cholesterol oxidase treatment on physical state of renal brush border membranes: evidence for a cholesterol pool interacting weakly with membrane lipids.
    el Yandouzi EH; Le Grimellec C
    Biochemistry; 1993 Mar; 32(8):2047-52. PubMed ID: 8448163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of dietary fish oil supplementation on membrane fluidity and enzyme activity in rat small intestine.
    Stenson WF; Seetharam B; Talkad V; Pickett W; Dudeja P; Brasitus TA
    Biochem J; 1989 Oct; 263(1):41-5. PubMed ID: 2604705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hormonal effects on the sulfhydryl groups associated with intestinal brush border membrane proteins.
    Tolosa de Talamoni N; Mykkanen H; Cai Q; Wasserman RH
    Biochim Biophys Acta; 1991 Sep; 1094(2):224-30. PubMed ID: 1654120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microvillar iron-binding glycoproteins isolated from the rabbit small intestine.
    O'Donnell MW; Cox TM
    Biochem J; 1982 Jan; 202(1):107-15. PubMed ID: 6282268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decrease in the fluidity of brush-border membrane vesicles induced by gentamicin. A spin-labeling study.
    Moriyama T; Nakahama H; Fukuhara Y; Horio M; Yanase M; Orita Y; Kamada T; Kanashiro M; Miyake Y
    Biochem Pharmacol; 1989 Apr; 38(7):1169-74. PubMed ID: 2539819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The subcellular localization of the glycosphingolipids in the epithelial cells of rat small intestine.
    Hansson GC
    Biochim Biophys Acta; 1983 Sep; 733(2):295-9. PubMed ID: 6882764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of sulfhydryl group availability in the intestinal brush border membrane by deficiencies of dietary calcium and phosphorus in chicks.
    Tolosa de Talamoni N; Mykkanen H; Wasserman RH
    J Nutr; 1990 Oct; 120(10):1198-204. PubMed ID: 2213248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immunolocalization of transferrin and transferrin receptor in mouse small intestinal absorptive cells.
    Levine DS; Woods JW
    J Histochem Cytochem; 1990 Jun; 38(6):851-8. PubMed ID: 2186090
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature adaptation of biological membranes: differential homoeoviscous responses in brush-border and basolateral membranes of carp intestinal mucosa.
    Lee JA; Cossins AR
    Biochim Biophys Acta; 1990 Jul; 1026(2):195-203. PubMed ID: 2378886
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of epidermal growth factor on brush border surface area and function in the distal remnant following resection in the rabbit.
    Hardin JA; Chung B; O'loughlin EV; Gall DG
    Gut; 1999 Jan; 44(1):26-32. PubMed ID: 9862822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of maleate on membrane physical state of brush border and basolateral membranes of the dog kidney.
    Le Grimellec C; Carrière S; Cardinal J; Giocondi MC
    Life Sci; 1982 Mar; 30(13):1107-11. PubMed ID: 6281601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescence studies of the conformation of pyrene-labeled tropomyosin: effects of F-actin and myosin subfragment 1.
    Ishii Y; Lehrer SS
    Biochemistry; 1985 Nov; 24(23):6631-8. PubMed ID: 4084547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distribution of sulfhydryl groups in intestinal brush border membranes. Localization of side-chains essential for glucose transport and phlorizin binding.
    Klip A; Grinstein S; Semenza G
    Biochim Biophys Acta; 1979 Dec; 558(2):233-45. PubMed ID: 508745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.