These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 25983311)

  • 1. An explicit formula for the coherent SH waves' attenuation coefficient in random porous materials with low porosities.
    Zhang J; Ye W
    Ultrasonics; 2015 Sep; 62():27-34. PubMed ID: 25983311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of effective phase velocity and attenuation of shear elastic wave propagation in unidirectional composite materials.
    Zhang J; Ye W; Yu TX
    Ultrasonics; 2013 Aug; 53(6):1200-11. PubMed ID: 23582239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media.
    Müller TM; Sahay PN
    J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface/interface effects on the effective propagation constants of coherent waves in composites with random parallel nanofibers.
    Kong Z; Wei P; Jiao F
    J Acoust Soc Am; 2016 Jul; 140(1):486. PubMed ID: 27475172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical approach to multiple scattering of surface waves by shallow cavities in a half-space.
    Phan H; Cho Y; Li W
    Ultrasonics; 2018 Aug; 88():16-25. PubMed ID: 29533187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of numerical and effective-medium modeling of porosity in layered media.
    Veres IA; Smith RA; Pinfield VJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1086-94. PubMed ID: 26067043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of incoherent and coherent backscattered wave fields from cavities in a solid matrix.
    Pinfield VJ; Challis RE
    J Acoust Soc Am; 2012 Dec; 132(6):3760-9. PubMed ID: 23231106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section.
    Mazzotti M; Bartoli I; Marzani A; Viola E
    Ultrasonics; 2013 Sep; 53(7):1227-41. PubMed ID: 23642317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid micro-scale model for transport in connected macro-pores in porous media.
    Ryan EM; Tartakovsky AM
    J Contam Hydrol; 2011 Sep; 126(1-2):61-71. PubMed ID: 21802766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent diffusion coefficients in periodic porous materials.
    Dudko OK; Berezhkovskii AM; Weiss GH
    J Phys Chem B; 2005 Nov; 109(45):21296-9. PubMed ID: 16853761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes.
    Krödel S; Palermo A; Daraio C
    J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores.
    Dupont T; Leclaire P; Panneton R
    J Acoust Soc Am; 2013 Apr; 133(4):2136-45. PubMed ID: 23556583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.
    Wang Z; Wang R; Li T; Qiu H; Wang F
    PLoS One; 2015; 10(5):e0126941. PubMed ID: 25961729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation and dispersion of antiplane shear waves due to scattering by many two-dimensional cavities.
    Kawahara J; Ohno T; Yomogida K
    J Acoust Soc Am; 2009 Jun; 125(6):3589-96. PubMed ID: 19507940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling ultrasound attenuation in porous structures with mono-disperse random pore distributions using the independent scattering approximation: a 2D simulation study.
    Yousefian O; Karbalaeisadegh Y; Muller M
    Phys Med Biol; 2019 Aug; 64(15):155013. PubMed ID: 31207588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales.
    Holman IP; Dubus IG; Hollis JM; Brown CD
    Sci Total Environ; 2004 Jan; 318(1-3):73-88. PubMed ID: 14654276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of electromagnetic waves in a two-dimensional random medium.
    Ye Z; Li S; Sun X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):045602. PubMed ID: 12443251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.