These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25983340)

  • 1. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants.
    Bandyopadhyay S; Mercier PP; Lysaght AC; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2014 Dec; 49(12):2812-2824. PubMed ID: 25983340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Capacitive DC-DC Boost Converter with Gate Bias Boosting and Dynamic Body Biasing for an RF Energy Harvesting System.
    Jung J; Kwon I
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High Power-Conversion-Efficiency Voltage Boost Converter with MPPT for Wireless Sensor Nodes.
    Zhu X; Fu Q; Yang R; Zhang Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 7.5-mV Input and 88%-Efficiency Single-Inductor Boost Converter with Self-Startup and MPPT for Thermoelectric Energy Harvesting.
    Wu C; Zhang J; Zhang Y; Zeng Y
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a High-Efficiency DC-DC Boost Converter for RF Energy Harvesting IoT Sensors.
    Kim J; Kwon I
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-power circuits for the bidirectional wireless monitoring system of the orthopedic implants.
    Hong Chen ; Ming Liu ; Wenhan Hao ; Yi Chen ; Chen Jia ; Chun Zhang ; Zihua Wang
    IEEE Trans Biomed Circuits Syst; 2009 Dec; 3(6):437-43. PubMed ID: 23853291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3.5 mV Input Single-Inductor Self-Starting Boost Converter with Loss-Aware MPPT for Efficient Autonomous Body-Heat Energy Harvesting.
    Bose S; Anand T; Johnston ML
    IEEE J Solid-State Circuits; 2021 Jun; 56(6):1837-1848. PubMed ID: 34176956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Compact and Efficient Boost Converter in a 28 nm CMOS with 90 mV Self-Startup and Maximum Output Voltage Tracking ZCS for Thermoelectric Energy Harvesting.
    Ali M; Chandrarathna SC; Moon SY; Jana MS; Shafique A; Qraiqea H; Lee JW
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multifunctional Battery-Free Bluetooth Low Energy Wireless Sensor Node Remotely Powered by Electromagnetic Wireless Power Transfer in Far-Field.
    Sidibe A; Loubet G; Takacs A; Dragomirescu D
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Voltage Energy-Harvesting Interface for Irregular Kinetic Energy Harvesting in IoT Systems with 1365% Improvement Using All-NMOS Power Switches and Ultra-low Quiescent Current Controller.
    Saif H; Khan MB; Lee J; Lee K; Lee Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.
    Lee I; Sylvester D; Blaauw D
    IEEE J Solid-State Circuits; 2016 Mar; 51(3):697-711. PubMed ID: 27546899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 900 MHz, Wide-Input Range, High-Efficiency, Differential CMOS Rectifier for Ambient Wireless Powering.
    Alhoshany A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy extraction from the biologic battery in the inner ear.
    Mercier PP; Lysaght AC; Bandyopadhyay S; Chandrakasan AP; Stankovic KM
    Nat Biotechnol; 2012 Dec; 30(12):1240-3. PubMed ID: 23138225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications.
    Mercier PP; Bandyopadhyay S; Lysaght AC; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2014 Jul; 49(7):1463-1474. PubMed ID: 26246641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 16.8 nW Ultra-Low-Power Energy Harvester IC for Tiny Ingestible Sensors Sustained by Bio-Galvanic Energy Source.
    Chandrarathna SC; Lee JW
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):55-67. PubMed ID: 33347412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dynamic Threshold Cancellation Technique for a High-Power Conversion Efficiency CMOS Rectifier.
    Godinho A; Yang Z; Dong T; Gonçalves L; Mendes P; Wen Y; Li P; Jiang Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-Area Radiofrequency-Energy-Harvesting Integrated Circuits for Powering Wireless Sensor Networks.
    Sung GM; Chung CK; Lai YJ; Syu JY
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated RF energy-harvesting system with broad input voltage range and high power conversion efficiency.
    Wang S; Jiang X; Pan H; Ye X; Chen J
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2218976120. PubMed ID: 37364092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications.
    Potocny M; Kovac M; Arbet D; Sovcik M; Nagy L; Stopjakova V; Ravasz R
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Organic Photovoltaic Cells and Ultra Low Power CMOS Circuit for Indoor Light Energy Harvesting.
    Batista D; Oliveira LB; Paulino N; Carvalho C; Oliveira JP; Farinhas J; Charas A; Dos Santos PM
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30991740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.