These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 25983537)

  • 1. Empirical Transition Probability Indexing Sparse-Coding Belief Propagation (ETPI-SCoBeP) Genome Sequence Alignment.
    Roozgard A; Barzigar N; Wang S; Jiang X; Cheng S
    Cancer Inform; 2014; 13(Suppl 1):159-65. PubMed ID: 25983537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide sequence alignment using sparse coding and belief propagation.
    Roozgard A; Barzigar N; Wang S; Jiang X; Ohno-Machado L; Cheng S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():588-91. PubMed ID: 24109755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faster single-end alignment generation utilizing multi-thread for BWA.
    Jo H; Koh G
    Biomed Mater Eng; 2015; 26 Suppl 1():S1791-6. PubMed ID: 26405948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and memory efficient approach for mapping NGS reads to a reference genome.
    Kumar S; Agarwal S; Ranvijay
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950008. PubMed ID: 31057068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixture noise removal in ultrasound images using SCoBeP and low-rank matrix completion.
    Barzigar N; Roozgard A; Verma P; Cheng S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():109-12. PubMed ID: 24109636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-threading the generation of Burrows-Wheeler Alignment.
    Jo H
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.
    Cui Y; Liao X; Zhu X; Wang B; Peng S
    Interdiscip Sci; 2016 Mar; 8(1):28-34. PubMed ID: 26358141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.
    Robinson KM; Hawkins AS; Santana-Cruz I; Adkins RS; Shetty AC; Nagaraj S; Sadzewicz L; Tallon LJ; Rasko DA; Fraser CM; Mahurkar A; Silva JC; Dunning Hotopp JC
    Microb Genom; 2017 Sep; 3(9):e000122. PubMed ID: 29114401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data.
    AbuĂ­n JM; Pichel JC; Pena TF; Amigo J
    PLoS One; 2016; 11(5):e0155461. PubMed ID: 27182962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long Read Alignment with Parallel MapReduce Cloud Platform.
    Al-Absi AA; Kang DK
    Biomed Res Int; 2015; 2015():807407. PubMed ID: 26839887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-aligner: long-read alignment based on genome statistics.
    Nashta-Ali D; Aliyari A; Ahmadian Moghadam A; Edrisi MA; Motahari SA; Hossein Khalaj B
    BMC Bioinformatics; 2017 Feb; 18(1):126. PubMed ID: 28231760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIDA: Distributed Indexing Dispatched Alignment.
    Mohamadi H; Vandervalk BP; Raymond A; Jackman SD; Chu J; Breshears CP; Birol I
    PLoS One; 2015; 10(4):e0126409. PubMed ID: 25923767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PipeMEM: A Framework to Speed Up BWA-MEM in Spark with Low Overhead.
    Zhang L; Liu C; Dong S
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31689965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medical image registration using sparse coding and belief propagation.
    Roozgard A; Barzigar N; Cheng S; Verma P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1141-4. PubMed ID: 23366098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and assessment of read-mapping by multiple next-generation sequencing aligners based on genome-wide characteristics.
    Thankaswamy-Kosalai S; Sen P; Nookaew I
    Genomics; 2017 Jul; 109(3-4):186-191. PubMed ID: 28286147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating the Next Generation Long Read Mapping with the FPGA-Based System.
    Chen P; Wang C; Li X; Zhou X
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):840-52. PubMed ID: 26356857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast read alignment with incorporation of known genomic variants.
    Guo H; Liu B; Guan D; Fu Y; Wang Y
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 6):265. PubMed ID: 31856811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Burrows-Wheeler Transform-Based Mapping Algorithms Used in High-Throughput Whole-Genome Sequencing: Application to Illumina Data for Livestock Genomes.
    Keel BN; Snelling WM
    Front Genet; 2018; 9():35. PubMed ID: 29535759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.