These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25984573)
41. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
42. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311 [TBL] [Abstract][Full Text] [Related]
43. Fabrication of Silk Scaffolds with Nanomicroscaled Structures and Tunable Stiffness. Xiao L; Liu S; Yao D; Ding Z; Fan Z; Lu Q; Kaplan DL Biomacromolecules; 2017 Jul; 18(7):2073-2079. PubMed ID: 28574695 [TBL] [Abstract][Full Text] [Related]
46. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
47. A Novel Silk Fiber-Based Scaffold for Regeneration of the Anterior Cruciate Ligament: Histological Results From a Study in Sheep. Teuschl A; Heimel P; Nürnberger S; van Griensven M; Redl H; Nau T Am J Sports Med; 2016 Jun; 44(6):1547-57. PubMed ID: 26957219 [TBL] [Abstract][Full Text] [Related]
48. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Sanz-Fraile H; Amoros S; Mendizabal I; Galvez-Monton C; Prat-Vidal C; Bayes-Genis A; Navajas D; Farre R; Otero J Tissue Eng Part A; 2020 Mar; 26(5-6):358-370. PubMed ID: 32085691 [TBL] [Abstract][Full Text] [Related]
49. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering. Yang L; Wang X; Xiong M; Liu X; Luo S; Luo J; Wang Y Sci Rep; 2024 Feb; 14(1):3942. PubMed ID: 38365964 [TBL] [Abstract][Full Text] [Related]
50. Nanoscale Control of Silks for Nanofibrous Scaffold Formation with Improved Porous Structure. Lin S; Lu G; Liu S; Bai S; Liu X; Lu Q; Zuo B; Kaplan DL; Zhu H J Mater Chem B; 2014 May; 2(17):2622-2633. PubMed ID: 24949200 [TBL] [Abstract][Full Text] [Related]
51. Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Rockwood DN; Gil ES; Park SH; Kluge JA; Grayson W; Bhumiratana S; Rajkhowa R; Wang X; Kim SJ; Vunjak-Novakovic G; Kaplan DL Acta Biomater; 2011 Jan; 7(1):144-51. PubMed ID: 20656075 [TBL] [Abstract][Full Text] [Related]
52. Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. Barlian A; Judawisastra H; Alfarafisa NM; Wibowo UA; Rosadi I PeerJ; 2018; 6():e5809. PubMed ID: 30488014 [TBL] [Abstract][Full Text] [Related]
53. Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits. Tang L; Yang Y; Li Y; Yang G; Luo T; Xu Y; Zhang W Acta Bioeng Biomech; 2018; 20(4):77-87. PubMed ID: 30520436 [TBL] [Abstract][Full Text] [Related]
54. Water-insoluble amorphous silk fibroin scaffolds from aqueous solutions. Fan Z; Xiao L; Lu G; Ding Z; Lu Q J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):798-808. PubMed ID: 31207049 [TBL] [Abstract][Full Text] [Related]
55. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770 [TBL] [Abstract][Full Text] [Related]
56. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Orash Mahmoud Salehi A; Nourbakhsh MS; Rafienia M; Baradaran-Rafii A; Heidari Keshel S Int J Biol Macromol; 2020 Oct; 161():377-388. PubMed ID: 32526297 [TBL] [Abstract][Full Text] [Related]
57. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Han F; Liu S; Liu X; Pei Y; Bai S; Zhao H; Lu Q; Ma F; Kaplan DL; Zhu H Acta Biomater; 2014 Feb; 10(2):921-30. PubMed ID: 24090985 [TBL] [Abstract][Full Text] [Related]
58. Fabrication of Silk-Hyaluronan Composite as a Potential Scaffold for Tissue Repair. Yu LM; Liu T; Ma YL; Zhang F; Huang YC; Fan ZH Front Bioeng Biotechnol; 2020; 8():578988. PubMed ID: 33363124 [TBL] [Abstract][Full Text] [Related]
59. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Bhumiratana S; Grayson WL; Castaneda A; Rockwood DN; Gil ES; Kaplan DL; Vunjak-Novakovic G Biomaterials; 2011 Apr; 32(11):2812-20. PubMed ID: 21262535 [TBL] [Abstract][Full Text] [Related]
60. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D. Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]